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Topological classifier for detecting 
the emergence of epileptic seizures
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Abstract 

Objective:  An innovative method based on topological data analysis is introduced for classifying EEG recordings 
of patients affected by epilepsy. We construct a topological space from a collection of EEGs signals using Persistent 
Homology; then, we analyse the space by Persistent entropy, a global topological feature, in order to classify healthy 
and epileptic signals.

Results:  The performance of the resulting one-feature-based linear topological classifier is tested by analysing the 
Physionet dataset. The quality of classification is evaluated in terms of the Area Under Curve (AUC) of the receiver 
operating characteristic curve. It is shown that the linear topological classifier has an AUC equal to 97.2% while the 
performance of a classifier based on Sample Entropy has an AUC equal to 62.0%.
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Introduction
Epilepsy is a chronic brain disorder characterised by 
recurrent seizures of several entity with different mani-
festations. They are caused by sudden excessive electrical 
discharges in a group of neurons [1] and they are defined 
as a spontaneous hyper-synchronous activity of clusters 
of neurons [2].

Human brain can be considered as a complex self-
adaptive system composed of billions of non-identical 
neurons, entangled in loops of non-linear interactions, 
determining the brain behaviours [3]. Epilepsy is just 
an example of such behaviours: identifying the onset of 
a neural hyper-synchronisation is similar to discovering 
patterns of information expressed by a network of inter-
actions in the space of neurons.

The electroencephalogram (EEG) is the standard tech-
nique used to record the electrical activity of the brain. 
The direct observation of EEG signals helps neurologists 
in diagnosing epilepsy while automatic methods for this 
task are still not used even if, in the last decades, several 

methods for automatic diagnosis have been proposed in 
the literature [4–8]. The intrinsic non-linearity and non-
stationarity of EEG signals requires methods capable of 
extracting global information, characterising the pro-
cesses described by the signals.

Topological data analysis (TDA) is able to extract such 
information  [9–14]; currently, it has been used for the 
analysis of EEG signals  [15] within the TOPDRIM pro-
ject [16]. The key-concept in TDA is persistent homology: 
a procedure for counting, through a process called fil-
tration, the higher dimensional persistent holes of topo-
logical spaces. Its visualisation can be given as persistent 
barcodes or as persistent diagrams.

In this paper we describe the realisation of a Persistent 
Entropy-based classifier to discriminate the epileptic 
EEG signals from the non-epileptic ones. The proposed 
method defines an automatic classifier of signals and 
it is a preliminary step towards the study of an auto-
matic detection of epileptic seizures. Afterwards, we use 
the Vietoris–Rips filtration for understanding how the 
regions of the brain are involved in the spreading of epi-
leptic signals.
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Main text
Material and methods
Dataset
The dataset used consists of EEG signals, i.e. multivariate 
time series (see Fig. 1a), taken from the PhysioNet data-
base  [17]. EEGs are performed positioning electrodes 

at some key points on the patient’s head following some 
schemes: the database we used adopts the international 
10–20 system (see Fig. 1c). The EEGs used in this study 
were collected at the Children’s Hospital Boston and they 
consist of recordings from pediatric subjects with intrac-
table seizures. Subjects were monitored for several days 

Fig. 1  a Examples of epileptic (on the left) and healthy (on the right) EEG recordings. The amplitude of each signal is in µ V. b An example of a PL. 
c Graphical scheme representing the positions of the electrodes during an EEG. The arrows correspond to the 23 potential differences that are 
recorded. d Geometrical representation of some simplices, followed by an aggregation of simplices that is not a simplicial complex because the 
intersection of the two triangles is not a face of any of them. The last aggregation is a proper simplicial complex
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following the withdrawal of anti-seizure medication in 
order to characterise their seizures and assess their can-
didacy for surgery. We selected 33 recordings with, at 
least, one epileptic event and 33 without epileptic events. 
The recordings have the same number of channels (elec-
trodes), 23, with the same length, 921,600 samples with a 
sampling frequency of 256 Hz.

TDA: a new method for data analysis
Consider a set of points G, i.e. our data, embedded in a 
d-dimensional space Dd and assume that those data were 
sampled from an unknown k-dimensional space Dk with 
k ≤ d . Our task is to reconstruct the space Dk from the 
dataset G.

In TDA, G elements are equipped with a notion of 
proximity that characterises a coordinate-free metric. 
Those points are converted into topological spaces called 
simplicial complexes. Simplicial complexes are made up 
by building blocks called simplices: points are 0-sim-
plices, line segments are 1-simplices, filled triangles are 
2-simplices, filled tetrahedra are 3-simplices and so on 
(see Fig. 1d).

A Filtration is a collection of nested simplicial com-
plexes. Building a filtration can be seen as wearing lenses 
for examining the dataset: different lenses consent to 
extract different kinds of information from the topologi-
cal space. In this paper we use Piecewise filtration and 
Vietoris–Rips filtration. Choosing a filtration is a crucial 
step: different filtrations give rise to different conversions 
of the data points G into simplicial complexes [18–20].

Piecewise filtration  Piecewise filtration, recently intro-
duced by Rucco et  al.  [21], is used for studying signals. 
The procedure is based on the well known concept of 
Piecewise Linear function (PL), PL : R → R , shown in 
Fig. 2a, b.

Vietoris–Rips filtration  Vietoris–Rips filtration is 
used for studying Point Cloud Data (PCD). It creates a 
sequence of simplices, built on a metric space, used to 
add topological structure to an otherwise disconnected 
set of points  [22, Chapter III]. Figure  2c,  d, e show a 
graphical representation of this approach.

Persistent homology  Persistent homology is the com-
binatorial counterpart of Homology, an algebraic object 
that counts the number of n-dimensional holes in a topo-
logical space, the so-called Betti numbers. The filtration 
process is necessary for the computation of persistent 
homology. The set of Betti numbers is composed by β0 , 
the number of connected components in a generic topo-
logical space K; β1 , the number of holes in K; β2 , the num-
ber of voids in K and so on. Along the filtration, persistent 

homology calculates k−dimensional Betti intervals: a k−
dimensional Betti interval [tstart , tend] defines the time 
at which a k-dimensional hole appears in the simplicial 
complex ( tstart ), while tend is the time at which it disap-
pears. The holes that are still present at tend = tmax corre-
spond to persistent topological features [23]. A graphical 
representation of those intervals in K is called persistence 
barcode and it is associated to a filtration. An equivalent 
representation is a persistence diagram  [24]. An addi-
tional information returned by the computation of per-
sistent homology is the list of the generators, which are 
the simplices involved in the holes. Experimentally, the 
generators play a crucial role for the description of the 
data under analysis [25, 26].

Persistent entropy  A new entropy measure called Persis-
tent entropy has been recently introduced for measuring 
how much the construction of a filtered simplicial com-
plex is “ordered” [27]. Given a topological space K and a 
set of the filtration parameters F, let B = {[xi, yi) | i ∈ I} , 
where i is a set of indexes, be the persistent barcode asso-
ciated to the filtration of K. The Persistent entropy H of 
the filtered simplicial complex is calculated as follows:

where pi = ℓi
L  , ℓi = yi − xi , and L =

∑
i∈I ℓi . In case of 

a persistent interval [xi , ∞) , an interval [xi , m) is used, 
where m = max{F} + 1 . Moreover, to rescale H in the 
interval [0,  1] and to compare the values from different 
barcodes we use the stability theorem for H and the nor-
malised H, denoted by H , and defined as:

where ℓmax is the maximum interval length in the consid-
ered barcode [21].

A new topological classifier for epilepsy
Given the above theoretical framework, let us define a 
new methodology for the analysis of EEG signals. It can 
be divided in three steps:

Step I preprocessing of the input.
Step II computation of H using the Piecewise filtra-
tion and derivation of a linear topological classifier 
(LTC).
Step III identification of regions involved in the 
spreading of the epileptic signals using Vietoris–
Rips filtration.

H = −
∑

i∈I

pi log (pi)

H =
H

log ℓmax
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Step I
Let j ∈ {1, 2, . . . , 66} be the index of the EEG recordings, 
denoted by Sj . Each Sj is composed of 23 one-dimen-
sional signals, Sj = {S

j
1, S

j
2, . . . , S

j
23} , and each Sji ⊂ R

2 
is a PL function. The length of each Sji is N, the number 
of samples. For each Sji the preprocessing performs two 
actions:

1.	 Filtering the EEG reduces the noise by using a band-
pass filter between 1–70 Hz, and removes the power 
line using a notch filter, between 8 and 52  Hz  [28–
30].

2.	 Downsampling the EEG reduces the time needed 
for the computation of the topological features dur-
ing the subsequent steps. The worst-case complexity 

of computing persistent homology using the Java-
Plex tool  [31] is cubic in the number of simplices. 
This number is linear with respect to the number of 
points in case of piecewise complexes. Downsam-
pling should be used if and only if it preserves the 
main geometrical characteristics of the original sig-
nals, that is the shape. In MATLAB we used the com-
mand “decimate” [32].

After the preprocessing, the signals were denoted S̃ji.

Step II
After performing the Piecewise filtration, we computed 
H for each S̃j thus obtaining a vector of 23 values of H . 
Then, we calculated the average value of this vector, Ĥj . 

Fig. 2  Graphical representation of the algorithms for the Piecewise and the Vitetoris-Rips filtrations. a The input signal, formed by three time points 
with coordinates (1, 0),  (2, 2) and (3, 1) respectively. b The filtered simplicial complex formed by three 0−simplices: {v0, v1, v2} with filter values 
f (v0) = 0, f (v2) = 1, f (v1) = 2 and two 1−simplices: {e0, e1} , with filter values f (e0) = f (e1) = 2 , so the set of filter values is F = {0, 1, 2} . c A PCD in 
a metric space. d Each point is surrounded with a sphere of radius r / 2 such that all the spheres grow up simultaneously and equally. The choice of 
the parameter r gives rise to certain pairwise intersections of the spheres, which determine the simplices forming the simplicial complex at filtration 
time r. A pairwise non-empty intersection of dimension k is equal to a k − 1-simplex. e A sequence of increasing values for the parameter r gives rise 
to a filtration and a final simplicial complex K is formed with the maximum value of r. The Vietoris–Rips filtration is simply obtained by considering a 
sequence of increasing values of the parameter r. c, d and e are generated using the software by Brooks Mershon [35]
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Ĥj is our 1-dimensional feature able to differentiate sig-
nals by looking at their shapes [21].

We repeated the procedure using Sample Entropy, a 
well-established technique in time series analysis  [33, 
34], on the same dataset. Finally, we trained an H-based 
supervised classifier and a Sample Entropy-based super-
vised LTC. We randomly divided the dataset into a 

training ( 70% ) and a testing ( 30% ) subset. We applied a 
10-fold cross validation.

Step III
Let us consider our dataset as a PCD: each patient is 
represented by 23 points in RN . Assuming that the gen-
erators of the persistent holes correspond to the sensors 
on the head of the patient, we applied the Vietoris–Rips 

Fig. 3  a Ĥj for epileptic (red) and healthy (blue) signals. b Average value of Sample Entropy over the 23 EEG signals of epileptic patients (red) and 
of healthy patients (blue). c, d Histogram of the frequencies of Hj values for each channel, for each patient and for the two classes of patients. The 
elements are sorted into 10 equally spaced bins along the x-axis between the minimum and maximum values of Hj . e The ROC curve of the Ĥj

-based classifier (AUC = 97.2% ). f The ROC curve of the Sample Entropy-based classifier (AUC = 62% ). g Mosaic Plots representing the distance 
matrices of the recordings of four patients. The entries of the matrices are the pairwise Standardised Euclidean distances among sensors. The 
matrices are used in the calculation of Vietoris–Rips filtration. h, i Frequency of the generators, i.e. sensors, belonging to the found i-dimensional 
holes for 33 epileptic signals (left) and 33 healthy signals (right)



Page 6 of 7Piangerelli et al. BMC Res Notes  (2018) 11:392 

filtration to determine which particular sensors (thus, 
which areas of the brain) are more “involved”\“signifi-
cant” concerning the spreading of epileptic seizures. 
Standardised Euclidean distance among sensors, see 
Fig.  3g, is the metric upon which we performed the 
Vietoris–Rips filtration. This metric is useful when the 
dataset contains heterogeneous scale variables and it is 
defined as:

where S̃|k stands for the y-component in (xk , yk) of the 
channel signal S̃ and sk is the sample standard deviation 
calculated among the 23 y-components at position k of 
the signal S̃ to which S̃ belongs.

Results
We report the results of the analysis on the signals deci-
mated by a factor 10, which produced 92160 samples 
per signal (N = 92160). We tested our method using the 
non-downsampling signals and using different values 
of the decimation factor ( df = 10 and df = 100 ). We 
report the results of the analysis using df = 10 (because 
H did not show significative changes for df = 100 ). In 
Fig.  3c, d the frequency of the values of Hj

i is reported. 
The class of epileptic patients is characterised by a peak 
of 313 elements in the range [0.942, 0.967] of H values, 
with centre value 0.955. The class of healthy patients is 
characterised by a peak containing 247 elements with H 
values in [0.930, 0.948] with centre value 0.939. A strong 
separation between the two classes is clearly depicted in 
Fig. 3a where Ĥj is plotted. It is evident from the figure 
that there is a strong separation between the two popu-
lations. The Wilcoxon test (p-value = 1.8346e−36 and 
confidence interval [1.6942, 1.9675]), used because of the 
non-normal distribution of classes, confirmed the sepa-
ration. Sample Entropy failed to separate the two classes, 
see Fig. 3b.

The receiver operating characteristic (ROC) curves 
of the two classifiers are shown in Fig.  3e, f. The Area 
Under Curve (AUC) for the Ĥ-based LTC is 97.2% , 
while the AUC for the Sample Entropy-based classifier 
is 62% . The Ĥ-based classifier ROC curve suggests that 
the best threshold for the separation of the two classes is 
θ = 0.8754.

For each patient we extracted the values of the Betti 
numbers: even if there are less epileptic than healthy 
signals with β0 (3 vs. 12), this difference is not signifi-
cant (p-value = 0.6946, Wilcoxon test). In Fig.  3h, i the 
generators of all the found i-dimensional holes, were 
grouped in a frequency histogram. We can recognise that 

d(S̃, S̃′) =

√√√√
N∑

k=1

( S̃|k
sk

−
S̃′|k

sk

)2

the epileptic patients are characterised by 3 sensors (IDs 
1, 2 and 5) while the healthy patients are characterised 
by sensors with IDs 1, 2, 3, 7, 10, 13 and 14. Those histo-
grams are to be intended quantitatively: sensors involved 
in epilepsy spread are a few with respect to the ones 
involved in the normal brain activity.

Limitations
The results for the classifier are very promising, even 
if we are aware that the reduced number of samples 
requires further investigations over the effectiveness of 
the method. Moreover, the role of generators should be 
deeply investigated. Nevertheless, we believe the present 
methodology provides a useful example regarding the use 
of TDA, especially in time series analysis.
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