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Intranasal administration of cationic 
liposomes enhanced granulocyte–macrophage 
colony‑stimulating factor expression and this 
expression is dispensable for mucosal adjuvant 
activity
Rui Tada1*  , Akira Hidaka1, Hiroshi Kiyono2, Jun Kunisawa2,3 and Yukihiko Aramaki1

Abstract 

Objective:  Infectious diseases remain a threat to human life. Vaccination against pathogenic microbes is a primary 
method of treatment as well as prevention of infectious diseases. Particularly mucosal vaccination is a promising 
approach to fight against most infectious diseases, because mucosal surfaces are a major point of entry for most 
pathogens. We recently developed an effective mucosal adjuvant of cationic liposomes composed of 1,2-dioleoyl-
3-trimethylammonium-propane (DOTAP) and 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl] (DC-chol) (DOTAP/
DC-chol liposomes). However, the mechanism(s) underlying the mucosal adjuvant effects exerted by the cationic 
liposomes have been unclear. In this study, we investigated the role of granulocyte–macrophage colony-stimulating 
factor (GM-CSF), which was reported to act as a mucosal adjuvant, on the mucosal adjuvant activities of DOTAP/DC-
chol liposomes when administered intranasally to mice.

Results:  Here, we show that, although intranasal vaccination with cationic liposomes in combination with antigenic 
protein elicited GM-CSF expression at the site of administration, blocking GM-CSF function by using an anti-GM-CSF 
neutralizing antibody did not alter antigen-specific antibody production induced by DOTAP/DC-chol liposomes, indi-
cating that GM-CSF may not contribute to the mucosal adjuvant activity of the cationic liposomes when administered 
intranasally.

Keywords:  Cationic liposome, Granulocyte–macrophage colony-stimulating factor, Intranasal immunization, 
Mucosal adjuvant
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Introduction
Vaccines have been a great public health success in past 
decades. However, the development of additional safe 
and efficient vaccines against various infectious dis-
eases is still a challenge [1–3]. Among vaccine develop-
ment approaches, mucosal vaccines are most attractive 
for treating/preventing infectious diseases caused by 

pathogenic microbes, because most pathogens enter 
the host body via mucosal surfaces [4, 5]. However, the 
addition of mucosal adjuvants to mucosal vaccine for-
mulations is crucial to inducing antigen-specific immune 
responses to proteins derived from microbes, because 
these antigens show poor immunogenicity in mucosal 
compartments [6].

We have recently found that nasal immunization 
of an antigenic protein with cationic liposomes com-
posed of 1,2-dioleoyl-3-trimethylammonium-propane 
(DOTAP) and 3β-[N-(N′,N′-dimethylaminoethane)-
carbamoyl] (DC-chol) (DOTAP/DC-chol liposomes) 
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potently induced both mucosal and systemic immune 
responses to the antigen in mice [7–9]. Although the 
molecular mechanisms underlying the mucosal adju-
vant effects exerted by cationic liposomes was unclear, 
we revealed that these cationic liposomes promote the 
uptake of antigenic proteins by dendritic cells (DCs) 
in nasal-associated lymphoid tissues (NALTs) in  vivo. 
In general, one of the molecular mechanisms of adju-
vants is increased uptake of antigen and presentation 
to major histocompatibility complex (MHC) class II 
on antigen-presenting cells (APCs). However, activa-
tion of innate immunity might be much more impor-
tant for their adjuvant activities, including recruitment 
of innate immune cells at the site of administration 
and induction of cytokines and chemokines [10–12]. 
These views led us to investigate the role of cytokines 
in the mucosal adjuvant activity of DOTAP/DC-chol 
liposomes.

In the present study, we hypothesized that granulo-
cyte–macrophage colony-stimulating factor (GM-CSF) 
might be associated with the mucosal adjuvant effects 
of DOTAP/DC-chol liposomes administered intrana-
sally to mice. GM-CSF is involved in various biologi-
cal phenomena, such as promoting cell differentiation, 
activation, survival, and induction of inflammatory 
responses [13, 14], as well as inducing mucosal and 
serum antibody responses when co-administered with 
antigenic proteins via the nasal route in mice [15–18]. 
Thus, in this study, we examined the function of GM-
CSF in DOTAP-DC-chol liposome-induced antigen-
specific antibody responses in both mucosal and 
systemic area in mice.

Main text
Methods
Mice and materials
Female BALB/cCrSlc mice (7–10  weeks old) were pur-
chased from Japan SLC (Hamamatsu, Shizuoka, Japan). 
Animals were housed in a specific pathogen-free envi-
ronment and all animal experiments were approved by 
the institution’s committee for laboratory animal experi-
ments of the Tokyo University of Pharmacy and Life 
Sciences (P13–22, P14–31, and P15–33). 1,2-Dioleoyl-
3-trimethylammonium-propane (DOTAP) and 3β-[N-
(N′,N′-dimethylaminoethane)-carbamoyl] (DC-chol) 
were purchased from Avanti Polar Lipids (Alabaster, AL, 
USA). Recombinant mouse GM-CSF, anti-GM-CSF neu-
tralizing antibody, and rat IgG2a κ isotype control anti-
body were all purchased from BioLegend (San Diego, 
CA, USA). Low endotoxin (less than 1  EU/mg, guaran-
teed) egg white ovalbumin (OVA) was obtained from 
Wako Pure Chemical Industries (Osaka, Japan).

Preparation of liposomes
DOTAP/DC-chol liposomes were prepared as fol-
low [7]. 10  μmol of total lipid dissolved in chloroform 
(DOTAP:DC-chol at a 1:1  mol ratio) was evaporated to 
dryness to obtain the lipid films. The lipid films were then 
hydrated in 250  μL of phosphate-buffered saline (PBS) 
and vortexed for 5  min. The prepared liposomes were 
extruded 10 times by passage through an appropriate 
pore size polycarbonate membrane (Advantec, Tokyo, 
Japan) and sterilized via filtration (0.45-μm filter mem-
branes; Iwaki, Tokyo, Japan).

Immunization schedule
Mice were immunized twice intranasally once a week 
(days 0 and 7). Mice were divided into three groups as 
follows: (1) vehicle (PBS), (2) OVA alone (5 µg/mouse), or 
(3) OVA (5 µg/mouse) plus liposomes (400 nmol/mouse) 
or recombinant mouse GM-CSF (4 µg/mouse described 
previously [19]). After sacrificing the mice by sodium 
pentobarbital administration (100  mg/kg body weight, 
intraperitoneal), serum and nasal wash samples were col-
lected on day 14, as described previously [20, 21].

Detection of OVA‑specific antibody
A 96-well plate was coated with OVA in a 0.1  M car-
bonate buffer (pH 9.5). The plate was washed and then 
blocked with 1% bovine serum albumin (BSA; Wako 
Pure Chemical Industries) containing PBST (BPBST) 
for 60  min at 37  °C. After washing, the plate was incu-
bated with samples (serum or nasal wash) for 60 min at 
37 °C. To detect OVA-specific IgG antibody, plates were 
washed with PBST, treated with peroxidase-conjugated 
anti-mouse IgG (Sigma-Aldrich, St. Louis, MO, USA) in 
BPBST. The plate was washed, and combined with TMB 
substrate (KPL, Maryland, USA) and then further incu-
bated for color development. To detect OVA-specific 
IgA, IgG1, and IgG2a, plates were treated with biotin-
conjugated anti-mouse IgA, IgG1, or IgG2a (BioLegend) 
in BPBST, and then avidin-horseradish peroxidase (Bio-
Legend) in PBST was added. Plates were incubated with 
TMB substrate system (KPL). The reaction was termi-
nated with 1  N phosphoric acid, and optical densities 
were measured at 450  nm/650  nm [22–24]. Endpoint 
titers were calculated as the reciprocal of the last dilu-
tion exceeding a cut-off value that was twice the mean of 
a negative control [25, 26].

Preparation of splenocytes for cell culture
Splenocytes were prepared as described earlier [13, 27]. 
Briefly, after sacrificing the mice by cervical disloca-
tion, their spleens were excised and dissociated in RPMI 
1640 medium (Wako Pure Chemical Industries). The 
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resulting single-cell suspension was then treated with 
ACK lysis buffer (BioLegend). After centrifugation, sple-
nocytes were suspended in RPMI 1640 medium supple-
mented with 10% heat-inactivated fetal bovine serum 
(FBS; Biowest, Nuaillé, France), 100 U/mL of penicillin G 
potassium salt (Sigma-Aldrich), and 100 μg/mL of strep-
tomycin sulfate salt (Sigma-Aldrich). The cells were cul-
tured at 2 × 106 cells/well in 0.5 mL of culture medium in 
48-well flat-bottomed plates (IWAKI) and re-stimulated 
with OVA (Wako Pure Chemical Industries) for the indi-
cated time at 37 °C in a 5% CO2.

Cytokine assay
The cytokine concentrations were measured using ELISA 
MAX Standard Sets (BioLegend) according to the man-
ufacturer’s instructions. The data were expressed as the 
mean ± standard deviation. At least three independent 
experiments were conducted.

RNA extraction and quantitative real time‑polymerase chain 
reaction (qPCR)
BALB/c female mice were euthanized by sodium pento-
barbital administration (100  mg/kg body weight, intra-
peritoneal). Their nasal tissues and spleens were then 
excised, and the total RNA was extracted from these 
samples using a FavorPrep Tissue Total RNA Mini Kit 
(Favorgen Biotech Corporation, Ping-Tung, Taiwan), fol-
lowed by DNase I (Roche Life Science, Penzberg, Ger-
many) treatment. cDNA was synthesized from total RNA 
using a ReverTra Ace qPCR RT Master Mix (Toyobo, 
Tokyo, Japan). Then, qPCR was carried out according 
to the manufacturer’s instructions using a THUNDER-
BIRD SYBR qPCR Mix (Toyobo). The primers used for 
PCR were the following: GM-CSF, forward, 5′-TGG​GCA​
TTG​TGG​TCT​ACA​GC-3′, and reverse, 5′-GCG​GGT​
CTG​CAC​ACA​TGT​TA-3′; β2-microglobulin, forward, 
5′-TTC​TGG​TGC​TTG​TCT​CAC​TGA-3′, and reverse, 
5′-CAG​TAT​GTT​CGG​CTT​CCC​ATTC-3′. The expres-
sion of GM-CSF was determined using the comparative 
Δ-threshold cycle method using β2-microglobulin as a 
reference gene. GM-CSF expression is presented as the 
fold change relative to expression in the control sample.

Effect of anti‑GM‑CSF neutralizing antibody on mucosal 
adjuvant activity
BALB/c female mice were pre-treated intraperitoneally 
with anti-GM-CSF neutralizing antibody (100  µg/
mouse) 2  days before (day-2) and 1  h before immuni-
zation (days 0 and 7) as reported previously [28–31]. 
Mice were divided into three groups as follows: (1) PBS, 
(2) OVA alone (5 µg/mouse), or (3) OVA (5 µg/mouse) 
in combination with liposomes (400  nmol/mouse) 
on days 0 and 7. After sacrificing the mice by sodium 

pentobarbital administration (100  mg/kg body weight, 
intraperitoneal), serum and nasal wash samples were 
collected on day 14, as described previously [20, 21].

Statistics
Statistical differences were calculated with unpaired 
t-test with Welch’s correction and the Kruskal–Wallis 
test with Dunn’s post hoc test for cytokine and anti-
body production, respectively. Differences with p val-
ues of < 0.05 were considered significant.

Results
Antigen‑specific nasal and serum antibodies induced 
by intranasal immunization of OVA with the cationic 
liposomes
First, we evaluated the production of OVA-specific 
antibodies after intranasal immunization of OVA in 
combination with DOTAP/DC-chol liposomes in 
BALB/c female mice. As expected, intranasal vaccina-
tion induced the production of OVA-specific nasal IgA 
in nasal fluid and IgG in the serum compartment. In 
contrast, intranasal immunization with PBS (vehicle) 
or OVA alone did not exhibit significant OVA-specific 
antibody production in either mucosal or systemic 
under these experimental conditions (Additional file 1: 
Figure S1).

Expression of GM‑CSF in mucosal and systemic sites 
of vaccinated mice
Prior to assessing the contribution of GM-CSF on the 
mucosal adjuvant activities of the cationic liposomes, we 
first examined the expression of GM-CSF at the site of 
injections. As shown in Fig. 1a, intranasal administration 
with OVA and DOTAP/DC-chol liposomes significantly 
exerted the expression of GM-CSF in nasal areas (2.3- 
to 3.3-fold expression compared to mice that received 
either vehicle or OVA alone). On the other hand, immu-
nization with OVA and DOTAP/DC-chol liposomes did 
not induce any GM-CSF expression in the spleen. Addi-
tionally, since it is known that T cells activated via TCR 
signalling are capable of producing a large amount of 
GM-CSF [32, 33], we investigated antigen-specific GM-
CSF secretion in splenocytes by re-stimulating them 
with OVA in  vitro. As shown in Fig.  1b, splenocytes 
from OVA and DOTAP/DC-chol liposome-vaccinated 
mice produced higher levels of GM-CSF than those from 
OVA-only administered mice when re-stimulated with 
OVA. These results indicated that nasally administered 
DOTAP/DC-chol liposomes were polarized to induce the 
expression of GM-CSF.
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Effect of GM‑CSF on the mucosal adjuvant activities 
of nasally administered cationic liposomes
We next explored the role of GM-CSF in the effects of 
DOTAP/DC-chol liposomes as a mucosal adjuvant when 
administered intranasally. Before exploring this asso-
ciation, the mucosal adjuvant effect of nasally adminis-
tered recombinant GM-CSF was examined. As expected, 
intranasal administration with OVA and recombinant 

GM-CSF induced the production of OVA-specific IgA in 
nasal fluid and IgG in serum samples (Fig. 2), which are 
almost same that of DOTAP/DC-chol liposomes alone 
(Additional file 1: Figure S1). Next, we examined whether 
the induction of mucosal adjuvant effects by DOTAP/
DC-chol liposomes were dependent on GM-CSF using an 
anti-GM-CSF neutralizing monoclonal antibody (mAb) 
as previously described to block the biological activities 

b

a

PBS
OVA

OVA p
lus

 lip
os

om
e

0.0

0.5

1.0

1.5

R
el

at
iv

e 
ge

ne
 e

xp
re

ss
io

n
(G

M
-C

S
F/

B
2M

)

GM-CSF expression in spleen

N.S.

PBS
OVA

OVA p
lus

 lip
os

om
e

0

1

2

3
R

el
at

iv
e 

ge
ne

 e
xp

re
ss

io
n

(G
M

-C
S

F/
B

2M
)

GM-CSF expression in nasal tissues

*

PBS
OVA

OVA p
lus

 lip
os

om
e

0

200

400

600

G
M

-C
S

F
 (

pg
/m

L)

*

Fig. 1  mRNA expression of granulocyte–macrophage colony-stimulating factor (GM-CSF) in nasal and spleen tissues (a) and antigen-specific 
production of GM-CSF in splenocytes from mice administered intranasally with OVA plus the liposomes. a Nasal tissue and spleens were collected 
6 h after the last immunization. mRNA expression was measured using qPCR. b Spleens were collected 1 week after the last immunization, and then 
harvested splenocytes were cultured for 72 h in the presence of OVA (10 μg/mL). After culture, concentrations of GM-CSF were determined using 
ELISA. The values are the mean ± SD of technical duplicates from three biologically independent experiments. Significance was assessed using 
unpaired t-test with Welch’s correction; *p < 0.05
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of GM-CSF in  vivo [28–31]. Pre-treatment with anti-
GM-CSF neutralizing antibody did not affect nasal IgA 
or serum IgG, IgG1, or IgG2 antibody production, show-
ing that GM-CSF expression was not required for the 
mucosal adjuvant activities of cationic liposomes (Fig. 3). 

Discussion
In this study, we demonstrated the following: (1) intra-
nasal administration with DOTAP/DC-chol liposomes 

induced the expression of GM-CSF at the site of injec-
tions; (2) recombinant GM-CSF showed the mucosal 
adjuvant effect when nasally administered in mice; 
and (3) GM-CSF expression in nasal area induced by 
DOTAP/DC-chol liposomes was not required for the 
mucosal adjuvant activities.

The development of safe and efficient mucosal adju-
vants is needed to prevent fatal infectious diseases. 
To accomplish this, understanding the mechanism(s) 
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Fig. 2  Recombinant GM-CSF induces both mucosal and systemic OVA-specific antibody responses. The data show the OVA-specific nasal IgA and 
serum IgGs for each immunized group (PBS only, OVA alone, or OVA plus recombinant GM-CSF). The data were obtained from three independent 
experiments. The statistically significant value (*p < 0.0001) shown were calculated from the Kruskal–Wallis test with Dunn’s post hoc test
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underlying mucosal adjuvant induction of immune 
responses to antigenic proteins is essential. Generally, 
adjuvants show their activities through the depot effect, 
with the gradual release of antigen at the site of infection 
and increase in antigen uptake by APCs. Resent research 
has focused on the role of APCs in activating innate 
immunity [34]. In particular, the cytokine/chemokine 
milieu induced by external stimuli, including adjuvants, 
determines the immune response to antigenic proteins, 

including the production of antibody to the antigen [35–
37]. Many studies on the immunomodulating activities of 
GM-CSF have been reported. For instance, GM-CSF has 
been shown to stimulate the maturation and function of 
APCs, such as DCs and macrophages. GM-CSF is also a 
strong inducer of interleukin-6 (IL-6), which promotes 
germinal center development and B cell growth and dif-
ferentiation in these centers [38, 39]. We found that 
intranasal administration of DOTAP/DC-chol liposomes 

Fig. 3  Effect of anti-GM-CSF neutralizing antibodies on ovalbumin (OVA)-specific antibody responses induced by DOTAP/DC-chol liposomes. Mice 
were pre-treated intraperitoneally with anti-GM-CSF neutralizing antibody (100 µg/mouse) at day 0 and then immunized intranasally with PBS, OVA 
alone, or OVA plus DOTAP/DC-chol liposomes on days 2 and 9. Nasal washes and sera were collected on day 16. OVA-specific nasal IgA and serum 
IgGs were detected using ELISA. The data were obtained from three independent experiments. NS not significant as evaluated using the Kruskal–
Wallis test with Dunn’s post hoc test
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induced IL-6 expression in the nasal mucosa, and that 
this cytokine was critical for the induction of antigen-
specific IgA by the cationic liposomes (unpublished 
results). Therefore, local GM-CSF expression likely plays 
a role in enhancing humoral responses to the cationic 
liposomes. Furthermore, intranasal co-administration of 
antigens with a GM-CSF-expressing plasmid has been 
shown to increase OVA-specific mucosal IgA and serum 
IgG titers, suggesting that GM-CSF plays an essential 
role in the induction of humoral immune responses to 
antigenic proteins in both mucosal and systemic com-
partments [10, 18, 19, 40]. We investigated the role of 
GM-CSF on the mucosal adjuvant activities of the cati-
onic liposomes in this study and found that GM-CSF 
blocking did not affect their activities, clearly indicating 
that other soluble factors control the mucosal adjuvant 
activities of the cationic liposomes. Further experiments 
are required to clarify the molecular mechanism(s) 
underlying the induction of humoral immune responses 
by the cationic liposomes.

Limitations
Herein, we demonstrated that nasal administration of 
DOTAP/DC-chol liposomes induced the gene expression 
of GM-CSF at the site of administration; however, the 
protein level of GM-CSF in the nasal area after the nasal 
immunization of DOTAP/DC-chol liposomes has not 
been evaluated. The major limitation of this study is that 
though the protocol for studying the biological activities 
of GM-CSF neutralization at the mucosal compartments 
by intraperitoneal injection of anti-GM-CSF neutral-
izing antibody has been reported in literatures [28–31], 
we have not confirmed these neutralizing effects in this 
study. Overall, although our data suggested that GM-CSF 
may not be required for the mucosal adjuvant effects of 
the cationic liposomes, we were unable to identify the 
possible mechanism(s) for these effects in this study. 
Further experiments are required in the future to clarify 
these aspects.
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