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Abstract 

Objective:  The prevalence of Escherichia coli including from ice cubes in Indonesia is quite high. Unfortunately, little 
is known about the genetic diversity of E. coli from ice cube production site. Genotypic variation in E. coli popula-
tions is a major barrier to control public health risk associated with foodborne pathogen. The aims of this study were 
to analyze the genotypic diversity of E. coli strains isolated from various samples in order to determine the genetic 
relationship between those strains. This study is also important to understand the occurrence, prevalence and profile 
picture of different pathogenic E. coli in various sources which potentially cause disease.

Results:  Enterobacterial repetitive intergenic consensus (ERIC) and repetitive extragenic palindromic polymerase 
chain reaction (REP-PCR) dendrogram showed high genetic diversity of 120 E. coli isolates in majority of sampling 
sites. DNA fingerprint patterns showed 26 and 21 clusters with 11 and 3 fingerprints individual lineages for ERIC and 
REP-PCR respectively. There was no correlation observed between phylogenetic relationship and virulence genes. 
The result indicated a variation of E. coli isolates in ice cube manufacturers. ERIC-PCR method is more discriminative 
compared with REP-PCR to analyze the genetic diversity of E. coli from ice cubes production sites.
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Introduction
It was reported by WHO in 2015 that diarrhoeal diseases 
are responsible for more than half of the global burden of 
foodborne diseases, causing 550 million people to fall ill 
and 230,000 deaths every year. Diarrhoea is often caused 
by eating raw or undercooked meat, eggs, fresh produce, 
dairy products as well as drinking water contaminated 
by norovirus, Campylobacter, non-typhoidal Salmonella 
and pathogenic Escherichia coli (E. coli) [1].

Iced beverage are commonly consumed in Indonesia 
mostly produced by industries or homemade, nonethe-
less it may not always prepared properly. Several previ-
ous studies have revealed the presence of foodborne 
pathogenic bacteria in the ice and iced beverages, such 
as Salmonella as Salmonella spp, E. coli especially patho-
genic E. coli and Vibrio cholerae [2–4]. These conditions 
indicate the potency of microbiological hazard in iced 

beverages production. The microbiological hazard may 
come from the ingredients of iced beverages or from the 
processing environment.

Currently in Indonesia, little is known about the prev-
alence of different pathogenic E. coli in various sources 
including from ice cubes. Therefore, it is essential to gen-
erate a prior knowledge about the prevalence of patho-
gens especially E. coli in different source. Understanding 
their occurrence also the genetic diversity analysis in var-
ious potential host sources of contamination would help 
us to assess the health risk posed by such strains of E. coli 
and epidemiological surveillance of bacterial infections 
[5]. High genetic diversity among E. coli populations 
potentially influence the accuracy of the results, thus, 
more information is necessary on the genetic diversity of 
E. coli populations in a host source of interest.

Regarding the method of typing microbial patho-
gens or identifying bacteria at the strain level, ERIC and 
REP-PCR typing had the ability to separate Lactobacil-
lus strains in based upon the profiles generated [6, 7]. 
Our results also indicated that the method is applicable 
to high throughput analysis. High genetic diversity also 
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presented by ERIC-PCR results for E. coli in dairies prod-
ucts [8]. Both the ERIC and REP-PCR were shown high 
discriminatory index in Salmonella enteritidis research 
by Fardsanei et al. [9]. Thus, we use those methods in this 
research.

The aims of this study were to analyze the genotypic 
diversity of E. coli strains isolated from various samples 
using REP and ERIC-PCR in order to determine the 
genetic relationship between those strains. This study is 
also important to understand the occurrence and preva-
lence of different pathogenic E. coli in various sources. 
The data could be used to determine E. coli profile pic-
ture which potentially cause disease in Indonesia.

Main text
Methods
Materials used in this research was bacterial genomic 
DNA of positive E. coli isolates collected from ice cube 
manufacturers in previous study [10]. Ice cube manufac-
turers were located in city A, city B and city C from all 
big cities in Indonesia as representative. One hundred 
and twenty-one samples consists of 63 samples from city 
A, 50 samples from city B and 8 samples from city C. 
Study sites were collected from several area in Indonesia. 
Six sampling points at ice cube manufacturers were taken 
from water as raw material for ice, water filtration results, 
rinse water from hands of workers, rinse water from con-
tainer where ice is released from the mold, rinse water 
from hook tool and ice cubes as final products.

Escherichia coli was cultured in E. coli Broth (Oxoid) 
and EMB Agar (Oxoid) was used as selective media. 
Incubation temperature for E. coli is 37 °C for 24 h. Posi-
tive E. coli colonies were picked randomly 4 for each 
plate. Bacterial genomic DNA was extracted from all 
E. coli isolates. A loopful of bacteria colonies in 500  μL 
sterile water were prepared for each sample. DNA was 
extracted using Wizard genomic DNA purification kit 
(Promega) according to the manufacturer’s instructions. 
Before it was used, the DNA samples were quantified 
using BioDrop-DUO (Isogen Life Science). DNA were 
stored at − 20 °C until used.

Genotyping was performed using ERIC-PCR and REP-
PCR fingerprinting assay. The PCR amplifications were 
performed in a volume 25 μL of reaction mixtures con-
tained 12.5  μL Go Taq (Promega); 1.25  μL of 10  ρmol 
ERIC1R (5′-ATG​TAA​GCT CCT​GGG​GAT-3′) and 
ERIC2 (5′-AAG​TAA​GTG​ACT​GGG​GGT​GAGC-3′) [11]; 
1.5 μL of DNA template; 8.5 μL of PCR grade water for 
ERIC-PCR and 12.5 μL of Go Taq (Promega, USA); 1.5 μL 
of 10 ρmol REP 1R (5′-III ICGICGICA TCIGGC-3′) and 
REP 2I (5′-ICGICTT​ATC​IGGC​CTA​C-3′) [12]; 2  μL 
of DNA template; and 7.5  μL of PCR grade water for 
REP-PCR. The ERIC-PCR and REP-PCR thermal cycler 

(Biometra Tpersonal) program for this method followed 
Adiguzel et  al. [11], since the other journals that has 
been tried does not give better band appearance. Ampli-
fied PCR products were separated by electrophoresis on 
1.0% (w/v) agarose (1st base) at 60 V for 3 h. The molecu-
lar size of fragments generated by electrophoresis were 
determined by comparison to 1-kb DNA ladders (Gene 
aid).

To study the relatedness of bacterial strains, banding 
patterns generated by ERIC and REP-PCR was scored 
using binary scoring system that recorded the presence 
and absence of bands as 1 and 0, respectively. To produce 
dendrogram, a binary matrix was analyzed using dice 
similarity coefficient and unweighted pair group method 
for arithmetic averages (UPGMA) [7, 13]. These analysis 
were carried out using Free Tree software. UPGMA den-
drogram was drawn using Treeview [14–16].

Results
A total of 121 E. coli isolates from ice cube manufacturers 
were analyzed in this study. The genomic DNA concen-
tration isolated from these samples were ranged between 
50 and 1500  ng/µL with A260/A80 ratio between 1.9 
and 2.0. DNA samples concentration tested were stand-
ardized to 100  ng/µL. The sizes of ERIC-PCR products 
ranged from about 150 to about 4000 bp while the sizes 
of REP-PCR products ranged from about 170 to about 
4000  bp (Fig.  1). DNA fingerprint of ERIC-PCR in this 
study obtained 7–14 bands, where REP-PCR profiles 
resulted 5–10 bands.

ERIC and REP-PCR typing of 120 E. coli isolates tested 
at 50% similarity cut off value [17] were genetically 
diverse and consisted of heterogeneous population, all 
generated DNA patterns are relatively complex. Isolates 
in ERIC dendrogram were grouped into 26 clusters each 
containing at least two isolates (Fig.  2), whereas 11 fin-
gerprints (9%) had individual lineages. Dendrogram for 
REP-PCR showed 21 clusters each of them containing at 
least two isolates with three fingerprints (2%) had indi-
vidual lineages (Fig. 3).

Based on the source of E. coli isolates in ice cube manu-
facturers, isolates derived from one source of sampling 
sites in the ice cube manufacturer were not found to be 
in a group. High genetic diversity of E. coli were found 
in majority of sampling sites, such as E. coli isolates from 
ice cubes were found in many clusters i.e. 1, 8, 9, 15, 20 
and 22. Then E. coli isolates from water rinse of worker’s 
hands were found in clusters 3, 5, 6, 14, 18, 24 and 26. 
E. coli isolates derived from water for ice raw material 
occurred in clusters 3, 7, 15 and 16. Next, isolates of E. 
coli from water filtration result were found in clusters 2, 
5, 9, 14, and 19.
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As is the result of the ERIC dendrogram, E. coli isolates 
on REP dendrogram also showed the same thing. E. coli 
isolates derived from the ice cubes as final product were 
found in clusters 6, 7, 14 and 19. Then isolates of E. coli 
from hands of worker were found in clusters 8, 14, 16, 17, 
21. E. coli isolates derived from water for ice raw mate-
rial were in clusters 5, 11, 13, 16 and 18. Isolates of E. coli 
from water filtration result were found in cluster 3, 4, 5, 
17.

For site-based sample analysis, samples from city C 
were seen grouped in ERIC dendrogram on clusters 8, 
15 and 20 and clusters 6 and 19 on the REP dendrogram. 

Cluster with a large number of isolates, as in ERIC den-
drogram cluster 14 and REP dendrogram cluster 16, sam-
ple members can derived from samples of two cities, so 
it can be said that isolates are not clustered based on iso-
lates origin cities.

From the previous study by Nikastrie, 2016, of the 
samples on major virulence genes associated with diar-
rheagenic E. coli (eae, stx, elt), 30 samples were positively 
detected positive virulence genes (5 samples positives 
eae, 4 samples positive stx and 21 samples positive elt). 
Dendrogram showed that the distribution of the genes 
were spread among clusters.
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Fig. 1  DNA fingerprinting of several isolates E. coli generated by ERIC-PCR (a) and REP-PCR (b) amplification. M marker 1 kb ladder (gene aid)

Fig. 2  Dendrogram of E. coli isolates from ice cube manufacturers, derived from analysis ERIC-PCR profiles at 50% similarity level. Codes of isolates 
are directly opposite the source of isolation

(See figure on next page.)
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E59.1.a water rinse from hook tool
E20.3.b    water rinse from packaging surface
E20.1.b elt+ water rinse from packaging surface  
E7.4.b    ice cubes
E20.1.a water rinse from packaging surface
E7.1.b ice cubes
E7.2 elt+ ice cubes               
E7.5d elt+ ice cubes
E39.3 water rinse from hook tool
E60.2 water rinse from hook tool
E53.4b water rinse from hook tool
E33.3 water rinse from hook tool
E33.1 water rinse from hook tool
E33.2 water rinse from hook tool
E15.2 water filtration results
E6.2.b                       water rinse from packaging surface  
E14.2 water for ice raw material
E14.1.b eae+ water for ice raw material  
E14.3 water for ice raw material
E14.4 water for ice raw material
E74.3.a hands of workers
E74.1.a hands of workers
E74.2.a hands of workers
E6.4.b elt+ water rinse from packaging surface  
E18.1 water rinse from hook tool
E35.4.a water rinse from hook tool
E6.3.b water rinse from packaging surface  
E69.1 water rinse from hook tool
E13.1 water filtration results
E23.2.2 hands of workers
E56.1c water rinse from hook tool
E49.5.b hands of workers
E49.4.b hands of workers
E49.1.b hands of workers
E49.3.b hands of workers
E52.3.a water for ice raw material
E17.3 water rinse from packaging surface
E48.2.a water for ice raw material
E48.2.b water for ice raw material
E48.5.a water for ice raw material
E59.6.b elt+ water rinse from hook tool
E71.4b elt+ water rinse from hook tool
E71.1a water rinse from hook tool
E71.3.b water rinse from hook tool
E10.2 elt+ ice cubes
E10.3.b ice cubes
E10.1.b ice cubes
E10.2.b ice cubes
E13.2.5b elt+ water filtration results
E11.1.1.b ice cubes
E11.1.2.b ice cubes
E11.1.2.a elt+ ice cubes
E11.1.3.b ice cubes
E56.3 water rinse from hook tool
E35.6c elt+ water rinse from hook tool
E35.3b water rinse from hook tool
E35.5 water rinse from hook tool
E39.1.a water rinse from hook tool
E39.1.b elt+ water rinse from hook tool
E20.5.b water rinse from packaging surface
E53.1.a water rinse from hook tool
E18.2.2.a water rinse from hook tool
E18.2.4.a water rinse from hook tool
E18.4 stx+ water rinse from hook tool
E22.3b hands of workers
E18.2.1.b eae+ water rinse from hook tool
E25.4b hands of workers
E17.4a stx+ water rinse from packaging surface
E18.2.b water rinse from hook tool
E56.1a elt+ water rinse from hook tool
E13.1.d water filtration results
E23.4 hands of workers
E75.a hands of workers
E75.c elt+ hands of workers
E74.c elt+ hands of workers
E39.3.b water rinse from hook tool
E69.3.b water rinse from hook tool
E52.2a elt+ water for ice raw material
E69.4.b water rinse from hook tool
E1.2.b ice cubes
E1.3 ice cubes
E52.2b water for ice raw material
E53.2.a elt+ water rinse from hook tool
E59.5.a water rinse from hook tool
E37.1b elt+ water rinse from hook tool
E37.1 water rinse from hook tool
E37.2b water rinse from hook tool
E25.3.b hands of workers
E25.1.b hands of workers
E25.2.b hands of workers
E22.3c elt+ hands of workers
E59.4.a water rinse from hook tool
E13.2.4a water filtration results
E13.2.5a elt+ water filtration results
E17.4b stx+ water rinse from packaging surface
E60.4.a water rinse from hook tool
E17.2.5 water rinse from packaging surface
E1.4.b ice cubes
E1.5.b eae+ ice cubes
E53.3a stx+ water rinse from hook tool
E6.1.b elt+ water rinse from packaging surface
E15.1 water filtration results
E59.4 water rinse from hook tool
E2.2 ice cubes
E2.3 ice cubes
E2.1 ice cubes
E2.4b ice cubes
E67.1a water rinse from hook tool
E67.2a water rinse from hook tool
E67.3a water rinse from hook tool
E67.5.a water rinse from hook tool
E22.3.a hands of workers
E22.4.b hands of workers
E17.2.6.a water rinse from packaging surface
E17.2.1.a eae+ water rinse from packaging surface
E17.2.1.b eae+ water rinse from packaging surface
E18.2.5.a elt+ water rinse from hook tool
E22.2.b hands of workers
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Discussion
In this study, genetic variability of E. coli in populations 
from diverse habitat was analyzed using ERIC and REP-
PCR fingerprinting since it has previously been shown to 
have a good discriminatory power as mentioned above. 
ERIC and REP-PCR DNA fingerprint analysis revealed 
extensive genetic diversity among E. coli strains even 
from the same sampling sites.

Equally found by Louws et  al. [18], the total number 
of bands obtained by REP-PCR in this study were lower 
compared to ERIC PCR. This may rationalize how clus-
ters generated with REP-PCR revealed less clusters than 
ERIC-PCR fingerprinting. Research done by Mohapa-
tra et al. in [19, 20] showed that repetitive PCR method 
resulting more bands will create a larger number of clus-
ter. Therefore we found that ERIC-PCR produce more 
discriminative fingerprint patterns than REP-PCR. When 
it comes to distinguishing between human and non-
human isolates, Lipman et  al. [21] observed that REP-
PCR was less reliable than ERIC-PCR, whereas Leung 
et al. [22] found that ERIC-PCR was not an effective tool.

The presence of virulence genes in ice cube manufac-
turers is alarming, since there is possibility to be trans-
ferred to ice cubes. A lot of research has been done to 
determine E. coli contamination and their prevalence in 
water source [23–26] and drinking water [27–29]. Some 
studies on ice cube also indicated E. coli and pathogen 
contamination [30, 31]. Firlieyanti [2] showed that 45% 
ice cube samples in Bogor were fecal coliform positive 
and 10% sample were E. coli positive.

While this study presents that the most common viru-
lence genes were elt, other study conducted in Canada 
reported that eae gene was the most frequently identified 
gene compared to the others in fecal material of various 
animal hosts [32]. High percentage of estII gene linked 
with intestinal pathogenic E. coli (IPEC) was found in 
sewage treatment plants and environmental waters in 
Queensland, Australia [33] whereas the most frequently 
detected of E. coli virulence genes in marine sediments in 
Rome, Italy were traT (involved in sepsis), fyuA and ibeA 
(involved in meningitis) [34]. This could be some fact that 
the abundance of virulence gene-carrying E. coli strains 
were differ depend on which environment or source or in 
other words pathogens that could be expected to occur 
in contaminated waters are dependent on the host source 
reservoir from which they are derived.

Water and low environmental temperatures as a 
source of contamination for E. coli has been noted by 

other study. In 1985, Dickens et  al. [35] has revealed 
that Enteropathogenic bacteria including E. coli can 
survive when frozen in ice. Similarly, Falcão et al. [31] 
suggest that ice could be vehicle for enteric and other 
pathogens, while Kim et  al. [36] showed clearer result 
that melting ice contaminated by E. coli could survive 
and transferred lettuce surfaces via melted ice. Dual 
regulation system which assist and maintain growth 
in water were suggested by Seurinck et al. [37] and the 
properties of peritrichous pili-flagella that aid move-
ment in liquid environments that may enhance adap-
tation and survival [38]. The survival of E. coli follows 
an inverse relation with temperature. E. coli have a pro-
gram in which low temperature causes a slowing down 
of the metabolism then cause a delay in cellular damage 
[39].

Virulence genes (eae, stx, elt) detected from isolates 
in this study were spread among the clusters in dendro-
gram. So, there was no correlation observed between 
phylogenetic relationship and virulence genes, whereas 
the isolates were not grouped according to the viru-
lence factor pattern. With a lot of types virulence genes 
known in pathogenic E. coli, it is high possibility that 
other genes also occur in ice cube manufacturers. Here, 
we only focused on eae, stx and elt genes because they 
represent enteropathogenic E. coli (EPEC), enterohe-
morrhagic E. coli (EHEC) and enterotoxigenic E. coli 
(ETEC) respectively, which are included to be major 
causes of severe of diarrhea if it not treated properly 
[40].

As stated by Radu et al. [41], observing genetic diver-
sity among the E. coli isolated by means of molecular 
typing techniques will contribute to the investigation 
of potential epidemiological problems caused by this 
pathogen, so that critical points can be identified and 
appropriate measures implemented to guarantee prod-
uct safety.

In summary, we found that our samples indicated a 
variation in the occurrence of E. coli isolates in ice cube 
manufacturers, suggesting that they exhibit diverse 
population structures. ERIC-PCR method is more dis-
criminative compared with REP-PCR to analyze the 
genetic diversity of E. coli from ice cubes production 
sites. This result can be used as a recommendation to 
the government as there is need for regular monitoring 
and counseling is required for producers, distributors 
and consumers of ice cubes.

(See figure on next page.)
Fig. 3  Dendrogram of E. coli isolates from ice cube manufacturers, derived from analysis REP-PCR profiles at 50% similarity level. Codes of isolates 
are directly opposite the source of isolation
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E17.4b stx+ water rinse from packaging surface                      
E60.2    water rinse from hook tool
E11.1.2.b ice cubes
E11.1.1.b ice cubes
E11.1.2.a elt+ ice cubes
E11.1.3.b ice cubes
E17.2.5 water rinse from packaging surface
E17.2.6.a water rinse from packaging surface
E13.2.4a water filtration results
E13.2.5a elt+ water filtration results
E13.2.5b elt+ water filtration results
E18.1 water rinse from hook tool
E15.2 water filtration results
E18.2.b water rinse from hook tool
E18.2.4.a water rinse from hook tool
E69.1 water rinse from hook tool
E18.2.2.a water rinse from hook tool
E18.2.1.b eae+ water rinse from hook tool
E18.2.5.a elt+ water rinse from hook tool
E15.5.b water filtration results
E18.4 stx+ water rinse from hook tool
E14.2 water for ice raw material
E15.1 water filtration results
E15.3.b water filtration results
E20.1.a water rinse from packaging surface
E20.1.b elt+ water rinse from packaging surface
E59.5.a water rinse from hook tool
E1.3 ice cubes
E1.2.b ice cubes
E1.4.b ice cubes
E1.5.b eae+ ice cubes
E2.1 ice cubes
E2.3 ice cubes
E2.2 ice cubes
E2.4b ice cubes
E49.4.b hands of workers
E49.1.b hands of workers
E49.3.b hands of workers
E49.5.b hands of workers
E6.3.b water rinse from packaging surface
E6.1.b elt+ water rinse from packaging surface
E6.4.b elt+ water rinse from packaging surface
E59.4 water rinse from hook tool
E67.5a water rinse from hook tool
E67.2a water rinse from hook tool
E67.3a water rinse from hook tool
E20.5.b water rinse from packaging surface
E39.3.a water rinse from hook tool
E59.1.a water rinse from hook tool
E14.1.b eae+ water for ice raw material
E14.3 water for ice raw material
E17.2.1.a eae+ water rinse from packaging surface
E17.2.1.b eae+ water rinse from packaging surface
E14.4 water for ice raw material
E48.5.a water for ice raw material
E59.6.b elt+ water rinse from hook tool
E48.2.a water for ice raw material
E48.2.b water for ice raw material
E7.4.b ice cubes
E7.5d elt+ ice cubes
E7.1.b ice cubes
E7.2 elt+ ice cubes
E75.a hands of workers
E74.c elt+ hands of workers
E75.c elt+ hands of workers
E6.2.b water rinse from packaging surface
E59.4.a water rinse from hook tool
E60.4.a water rinse from hook tool
E53.2.a elt+ water rinse from hook tool
E39.3.b water rinse from hook tool
E39.1.a water rinse from hook tool
E39.1.b elt+ water rinse from hook tool
E22.4.b hands of workers
E22.2.b hands of workers
E22.3.a hands of workers
E35.6c elt+ water rinse from hook tool
E35.3b water rinse from hook tool
E35.5 water rinse from hook tool
E33.2 water rinse from hook tool
E39.3 water rinse from hook tool
E22.3b hands of workers
E22.3c elt+ hands of workers
E52.2a elt+ water for ice raw material
E37.1b elt+ water rinse from hook tool
E52.2b water for ice raw material
E17.4a stx+ water rinse from packaging surface
E13.1.d water filtration results
E23.2.2 hands of workers
E13.1 water filtration results
E23.4 hands of workers
E67.1a water rinse from hook tool
E33.3 water rinse from hook tool
E33.1 water rinse from hook tool
E56.1c water rinse from hook tool
E53.1.a water rinse from hook tool
E71.4b elt+ water rinse from hook tool
E71.1a water rinse from hook tool
E71.3.b water rinse from hook tool
E37.1 water rinse from hook tool
E37.2b water rinse from hook tool
E35.4.a water rinse from hook tool
E69.4.b water rinse from hook tool
E52.3.a water for ice raw material
E17.3 water rinse from packaging surface
E56.1a elt+ water rinse from hook tool
E53.4b water rinse from hook tool
E56.3 water rinse from hook tool
E53.3a stx+ water rinse from hook tool
E10.2 elt+ ice cubes
E10.3.b ice cubes
E10.1.b ice cubes
E10.2.b ice cubes
E20.3.b water rinse from packaging surface
E69.3.b water rinse from hook tool
E25.3.b hands of workers
E25.2.b hands of workers
E25.1.b    hands of workers          
E25.4b hands of workers
E74.3.a hands of workers
E74.1.a hands of workers
E74.2.a hands of workers
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Limitations
Contamination of E. coli below limit detection cannot 
be detected in this research, though it may have con-
taminated the iced.
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