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Detection of virus‑specific polymeric 
immunoglobulin A in acute hepatitis A, C, 
E virus serum samples using novel chimeric 
secretory component
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Abstract 

Objective:  To conduct a proof-of-concept study on preferential binding of polymeric IgA (pIgA) using a novel 
recombinant rabbit/human chimeric secretory component (cSC) and preliminary assessment of the diagnostic poten-
tial of virus-specific pIgA in discriminating acute hepatitis A, E, and C (HAV, HEV, HCV) patients and uninfected controls 
using an indirect enzyme-linked immunoassay.

Results:  cSC binds > 0.06 μg/ml of purified human and mouse pIgA with negligible cross-reactivity against IgM and 
IgA. Virus-specific pIgA was significantly higher in serum of acute HAV (n = 6) and HEV (n = 12) patients than unin-
fected samples (HEV: p < 0.001; HAV: p = 0.001), and had low correlation with virus-specific IgM (HEV r: − 0.25, 95% CI 
− 0.88 to 0.71, p = 0.636; HAV r: 0.05, 95% CI − 0.54 to 0.60, p: 0.885). Anti-HCV pIgA peaked early in HCV seroconver-
sion panels (n = 14), and was undetectable after 4 weeks post-primary bleed, even in ongoing infections, while serum 
anti-HCV IgA, IgG and IgM persisted. Patients with early acute HCV infection had significantly higher levels of anti-HCV 
pIgA compared to those with chronic infections (p < 0.01). The use of novel cSC demonstrates the presence of virus-
specific pIgA in sera of patients with acute HAV, HEV, and HCV infection, and posits its potential utility as a diagnostic 
biomarker that warrants further validation on larger sample populations.
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Introduction
Viral hepatitis contributes significant global disease bur-
den [1]. Hepatitis A and hepatitis E viruses (HAV, HEV) 
are enterically transmitted but replicate in and cause 
acute inflammation of the liver [2, 3], while parenter-
ally transmitted hepatitis C virus (HCV) causes chronic 
hepatitis in 75–85% of infected individuals [4]. These 
infections begin and/or persist in mucosal tissues where 
polymeric immunoglobulin (Ig) A (pIgA) is the predomi-
nant antibody produced [5–7]. PIgA is transported by 
the polymeric immunoglobulin receptor (pIgR) to the 

epithelial surface where the pIgA-bound secretory com-
ponent (SC) of pIgR is cleaved, releasing secretory IgA 
(SIgA) [5, 8–10]. Anti-HAV and anti-HEV IgA have been 
reported in the acute phase of disease [2, 3], but the pro-
portion of pIgA is unknown. Anti-HCV IgM cannot dis-
criminate chronic from acute HCV infections; and IgG 
cannot discriminate current from past HCV infections, 
and less is known on the role of anti-HCV IgA. With 
HEV being recognised as an emerging disease in indus-
trialized countries [11, 12], chronic HCV causing of mor-
tality from liver cancer and cirrhosis worldwide [1] and 
HAV a major source of food-borne outbreaks [13], there 
is interest in improved biomarkers to diagnose these 
infections.
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While entirely polymeric in most animals, only 1–15% 
of human serum IgA is pIgA, the rest is monomeric [14–
18]. Previous studies of antigen-specific pIgA in human 
disease relied on gel filtration to separate pIgA [19, 
20]—cumbersome for translational studies of immune 
responses. Consequently, the role of pIgA as a diagnos-
tic biomarker remains underexplored. In this study, a 
recombinant chimeric SC (cSC) was expressed based on 
described methods [21–23], and a novel enzyme-linked 
immunoassay (ELISA) was designed to enable preferen-
tial binding of low amounts of pIgA present in patient 
sera (≈ 0.2  mg/ml dIgA versus ≈ 1  mg/ml IgM). Using 
the cSC-based ELISA, pIgA responses in HAV, HCV, 
HEV infections were examined as proof-of-concept for 
serodiagnostic application in viral hepatitis.

Main text
Materials and methods
Sample population
ELISA-confirmed anti-HEV IgM+ acutely infected 
(n = 6) and uninfected sera (n = 8) were from a Nepa-
lese prison study (Dr IL Shrestha, Siddhi Polyclinic), and 
anti-HAV IgM+ acutely infected (n = 12) and healthy 
sera (n = 4) were commercially sourced (BBI Diagnostics, 
SeraCare; West Bridgewater, MA) and from Alfred Hos-
pital, respectively. HCV ribonucleic nucleic acid (RNA)-
confirmed early incident seroconversion panels (n = 14), 
patients chronically infected/RNA+ > 6  months (n = 5), 
patients who spontaneously cleared HCV after 6 months/
late clearers (n = 5) and uninfected/RNA− controls 
(n = 5) were from the HITS-i cohort study [24] (Professor 
Andrew Lloyd) and commercially sourced (n = 5) (BBI 
diagnostics). Samples were de-identified and analyzed 
anonymously, with approval from the Alfred Ethics Com-
mittee (581/14).

Cloning and expression
Soluble cSC, 6XHistidine-tagged cSC (cSC-His) and 
human CD4 cytoplasmic domain (D)-containing cSC 
(cSC-CD4), human SC (hSC-CD4) and rabbit SC (rSC-
CD4) were expressed using modified published methods 
[22]. The hSC and rSC sequences were obtained from 
Genebank NM_002644.3 and X00412.1, respectively. 
Chimera of rSC-D1/hSC-D2-D5 were generated by splice 
overlap extension polymerase chain reaction with prim-
ers that introduced silent mutations in D1/D2 overlaps, 
followed by rSC/hSC-D1 exchange using EcoRI and SacI 
restriction digestion, and cloning in eukaryotic expres-
sion vector pCDNA3.1 Zeo (Invitrogen; San Diego, CA). 
Constructs were confirmed by DNA sequencing. Human 
embryonic kidney 293T (HEK293T) cells [25] were 

grown in Dulbecco’s Modified Eagle Medium (DMEM)-
GlutaMAX, 2.5% foetal calf serum (FCS), 100  U/ml 
Penicillin and 100  μg/ml Streptomycin (Invitrogen; San 
Diego, CA). HEK293T cells were transfected with plas-
mid encoding rSC-D1/hSC-D2-D5 using Lipofectamine 
2000 (Invitrogen; San Diego, CA) based on manufac-
turer’s protocol, plus 25  ml DMEM-GlutaMAX + 10% 
FCS + 1% Penicillin/Streptomycin. The cSC-containing 
supernatants were harvested 48–72  h post-transfection 
and centrifuged to remove cells.

Gel and western blot
Samples mixed with 2xLaemmli reducing loading 
buffer, boiled, and electrophorosed in 4–15% Mini-Pro-
tean TGX precast polyacrylamide gel (BioRad; Hercu-
les, California) for 40  min at 150  V were dry-blotted to 
nitrocellulose membranes using iBlot® (Life Technolo-
gies; Carlsbad, California). Membranes were incubated 
rolling in 5% skim milk in phosphate buffered saline 
(PBS)-0.05% Tween-20 (Amresco; Solon, OH) for 1 h at 
RT, then in  mouse monoclonal anti-human SC (1  μg/
ml) (Abcam; Abingdon, UK) at 4  °C overnight, then in 
horseradish peroxidase (HRP)-labelled anti-mouse Ig 
(1:1000) (Dako; Glostrup, Denmark) for 1  h at RT and 
finally in Luminata Forte Western HRP Substrate (Milli-
pore; Massachusetts, USA) for 1 min at RT before imag-
ing (CL-Xposure Film, Thermo Scientific; Illinois, USA). 
Membranes were washed thrice in PBS-0.05% Tween-20 
between incubations.

ELISA
Purified human IgA dimer (dIgA) (Nordic-MUbio; Sus-
teren, Netherlands), mouse pIgA (in-house, 3H1-hybri-
doma [26]), human IgM (Millipore; Billerica, MA), or 
human IgA serum standard (Nordic-MUbio; Susteren, 
Netherlands) at 1  μg/ml in pH9 carbonate/bicarbonate 
buffer diluted four-fold to 0.0625  μg/ml were incubated 
on 96-well Medisorp Nunc microtiter plates (Thermo 
Scientific; Waltham, MA) overnight at 4 °C. The cSC (1:5) 
was added to blocked plates and incubated overnight at 
4  °C. Polyclonal sheep anti-human SC (US Biological; 
Salem, MA) or monoclonal mouse anti-human SC (1 μg/
ml) were added to washed plates and incubated for 1 h at 
37 °C. HRP-labelled polyclonal donkey anti-sheep (Jack-
son Immunoresearch; Suffolk, UK) (1:5000) were added 
and incubated for 30 min at 37 °C. Alternatively, micro-
titer plates were coated with cSC-CD4 (1:5), incubated 
overnight at 4 °C and blocked for 1 h at 37 °C to capture 
aforementioned purified antibodies, followed by HRP-
labelled goat anti-human IgA (Abcam; Abingdon, UK) 
(1:10,000), HRP-labelled anti-human IgM (Millipore; 
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Billerica, MA) (1:5000), or HRP-labelled goat anti-mouse 
Ig (Dako; Glostrup, Denmark) (1:2000) for 30  min at 
37 °C.

Commercial anti-HEV IgM (MP Diagnostics, Singa-
pore) and anti-HCV IgG (Monolisa HCV Plus v2, Bio-
Rad; Hercules, California) ELISAs were run according 
to manufacturer’s protocol and using in-house proto-
cols to detect anti-HCV pIgA, IgA and IgM as described 
earlier. For anti-HEV and anti-HCV pIgA, sera/plasma 
were diluted 1:21 or 1:5, respectively, in cSC (1:5) for 1 h, 
then added to antigen pre-coated wells and incubated 
overnight at 4 °C. For anti-HCV IgA and IgM detection, 
plasma samples (1:5) were incubated for 1 h at 37 °C. For 
anti-HAV pIgA, cSC-CD4 (1:5) or goat anti-human IgM 
(Jackson Immunoresearch; West Grove, PA) coated micr-
otiter plates were incubated overnight at 4  °C, washed, 
blocked and sera samples (1:40 for pIgA; 1:80 for IgM) 
were added to washed plates and incubated overnight at 
4 °C. 1 μg/ml HAV pHM-175 antigen (Meridian Life Sci-
ence; Memphis, TN) was added and incubated for 1 h at 
37  °C, then anti-HAV K3-biotin and anti-human IgA1-
biotin (1:1000) for 1 h at 37 °C. HRP-labelled streptavidin 
(Millipore; Billerica, MA) (1:2000) was added and incu-
bated for 1 h at 37 °C.

All assays were run with samples in duplicate, 100 μl/
well/incubation and blocked with 200  μl/well/of 1% 
Bovine Serum Albumin (Sigma-Aldrich; St. Louis, MO)-
PBS-0.05% Tween-20, washed thrice with 350  μl/well 
PBS-0.05% Tween-20, developed with 3,3,5,5′-Tetra-
methylbenzidine (KPL; Gaithersburg, MD), stopped with 
0.5 M H2SO4 (Sigma-Aldrich; Steinheim, Germany) and 
read at 450/620 nm.

Sera IgM‑depletion
To demonstrate that the reactivity observed in cSC assays 
was not due to cross-reactive IgM, HEV+ sera samples 
were IgM-depleted using Capture Select™ agarose micro-
beads following manufacturer’s protocol (Life Technolo-
gies; Naarden, The Netherlands).

Liver enzymes
Alanine and aspartate aminotransferases (ALT and AST) 
were measured on Samsung LABGEO Biochemistry Test 
15 (Samsung; Gyeonggi-do, Korea) according to manu-
facturer’s protocol.

Statistical analysis
Signal-to-cut-off ratios (S/Co) were calculated using two 
standard deviations (SD) from mean of uninfected sam-
ples. Welch’s t-test was used to analyze cSC binding of 
different antibodies and Chi-square test for comparison 

of avidity. Mann–Whitney U test and Pearson correla-
tion analysis were performed to compare antibody reac-
tivity between acute samples and uninfected controls; 
the Wilcoxon test for non-parametric paired analysis 
was conducted to determine effect of IgM-depletion on 
virus-specific pIgA and IgM reactivity in acute samples. 
Antibody profiles over time were analyzed by Friedman’s 
non-parametric two-way ANOVA for repeated meas-
ures. Analyses were conducted in Microsoft Excel, Stata-
11 (StataCorp LP; College Station, TX) and GraphPad 
Prism-6 (GraphPad Software; La Jolla, CA). p < 0.05 was 
considered statistically significant.

Results
cSC selectively binds pIgA
cSC binds > 0.06  μg/ml of purified human and mouse 
dIgA with negligible cross-reactivity against purified IgM 
and human IgA, while hSC retains IgM-binding with 
high reactivity (Fig.  1a–c). Immobilized cSC does not 
bind mouse dIgA, likely from steric hindrance arising 
from immobilization. Recombinant SCs are detectable by 
anti-human SC on immunoblot (Fig. 1d).

Anti‑HEV and anti‑HAV dIgA
Individuals with acute HEV and HAV infection have sig-
nificantly higher levels of anti-HEV and anti-HAV pIgA, 
respectively, compared to uninfected controls (HEV: 
p < 0.001; HAV: p = 0.001) (Fig.  2a). Levels of anti-HEV 
and anti-HAV pIgA were comparable to anti-HEV and 
anti-HAV IgM, but with higher background reactivity 
from uninfected samples observed for IgM. In particular 
for HAV, an uninfected control immunized with intra-
muscular HAV vaccine 2  weeks prior (C0704), exhibits 
high reactivity for anti-HAV IgM but negligible reactivity 
for anti-HAV pIgA. The low correlation between virus-
specific pIgA and IgM in acute infection samples for both 
HEV and HAV (HEV r: − 0.25, 95% CI − 0.88 to 0.71, 
p = 0.636; HAV r: 0.05, 95% CI − 0.54 to 0.60, p: 0.885) 
suggests that pIgA production is independent of IgM in 
acute phase response, and may have higher diagnostic 
potential based on higher S/Co observed (Fig. 2b). While 
IgM-depleted samples have slight reduction of anti-HEV 
pIgA (paired test p = 0.016; unpaired test p = 0.394), anti-
HEV IgM is undetectable after IgM-depletion (paired test 
p = 0.007; unpaired test p = 0.002) (Fig.  2c), supporting 
the pIgA-specific nature of the cSC.

Anti‑HCV pIgA serological profile over time
Anti-HCV IgG increased over time and was higher 
in later timepoints and in patients who were chroni-
cally infected or cleared the infection after 6  months. 
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Anti-HCV pIgA declined over time even in ongoing 
infections—unlike anti-HCV IgA and ALT, which may 
persist, as observed in panel 901 and 400062 (Fig.  3a). 
Anti-HCV pIgA and IgA in acutely infected individuals 
were significantly higher at week-0 (p: 0.003), week-2 (p: 
0.006) and week-4 (p: 0.022) post-1st bleed compared to 
chronically infected individuals. In contrast, anti-HCV 
IgG is significantly lower in acutely infected individu-
als at week-0 (p < 0.001), week-2 (p < 0.001), and week-4 
(p: 0.014) compared to chronically infected individuals 
(Fig.  3b). These observations suggest that pIgA is pro-
duced predominantly during the acute phase even for 
infections that may progress to chronicity.

Discussion
Previous detection of antigen-specific pIgA in serum of 
individuals infected with rubella, measles and varicella 
required physical separation of pIgA from IgA [19], and 

did not assess diagnostic potential. This study high-
lights use of recombinant cSC for measuring serum 
pIgA by ELISA (including in zoonotic hosts as bind-
ing is conserved among tetrapods [27]), and virus-spe-
cific pIgA as a novel biomarker of acute hepatotrophic 
infections. Data from patients with acute HAV, HCV 
and HEV infection suggests: (1) virus-specific pIgA is 
detectable in patients during the acute phase of infec-
tion (Fig.  2); (2) transient profile of serum anti-HCV 
pIgA may differ from total anti-HCV IgA, and discrimi-
nate acute from chronic HCV infections (Fig.  3B); (3) 
anti-HEV pIgA is not correlated with and has higher 
specificity than anti-HEV IgM; and (4) anti-HAV pIgA 
is undetectable in HAV-vaccinated individual and may 
be more specific to natural infection.

Anti-HEV IgA is reportedly a potential marker of 
acute HEV infection [28–30], although it persists 
> 30  days longer than IgM [29]. In contrast, pIgA is 

Fig. 1  cSC preferential binding to dIgA/pIgA on ELISA and detection with monoclonal anti-human SC. Graphs show a cSC detection, b cSC-CD4 
capture and c hSC-CD4 capture, to compare binding and provide dynamic range of cSC and hSC binding to human and mouse dIgA, human IgA 
and human IgM and d monoclonal anti-human SC antibody (AB17377; Abcam, Abingdon UK) detection of 80 kDa hSC and cSC. Note: cSC and 
hSC not normalized for differences in yield/concentration of active SC, error bars indicate standard error as calculated in Excel. Asterisks indicate 
statistical significant with reference to dIgA [p value < 0.05 (*), < 0.01 (**), two tailed]
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known to have a shorter half-life in serum [31], which 
may serve as a better marker of recent infection. Unlike 
anti-HCV IgM, detectable in 51–82% of patients after 
6  months and beyond [32, 33], data from HCV sero-
conversion panels suggest that pIgA detected in acute 
phase is transient, even in an ongoing infection. Low 
correlation between virus-specific IgM and pIgA 
and varying propensity of antibody-isotype response 
observed may relate to the duration of infection, and/
or to the proportion of antigens circulating systemi-
cally or localized to the liver [34]. Detection of virus-
specific pIgA may complement existing ELISA and 

rapid immunochromatographic assays for acute viral 
hepatitis infections [35, 36], which merits further 
investigation.

Limitations
Although highly dynamic, the source of serum virus-
specific pIgA, either from mucosal production [37, 
38] or produced in sudden response to antigens [31, 
39–41], remains contentious. Serodiagnostic meas-
ure of pIgA used limited numbers of samples and con-
trols, and without a standard curve. Application in 

Fig. 2  Virus-specific pIgA for serodiagnosis of acute HEV and HAV infection. Scatterplots a show anti-HEV and anti-HAV dIgA compared to IgM 
reactivity detectable in acute and uninfected samples. Graph b illustrates the much higher S/Co ratio of dIgA compared to IgM in discriminating 
acute from uninfected samples, while graph c shows anti-HEV dIgA versus anti-HEV IgM in acute samples before and after IgM-depletion, providing 
evidence that the high reactivity observed for dIgA were not due to cSC cross-reactivity to IgM. Note: Unpaired and paired comparisons conducted 
using Mann–Whitney U and Wilcoxon test respectively, two-tailed. Asterisks indicate statistical significance of < 0.05 (*), < 0.01 (**), < 0.001 (***), and 
< 0.0001 (****) and error bars represent SD calculated in GraphPad Prism. S/Co calculated using two SD from mean of uninfected samples
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other diseases of interest may depend on the route of 
transmission and the major site(s) of pathogen rep-
lication, with limited diagnostic use in patients with 
IgA nephropathy glomerulonephritis due to increased 

production of antigen-specific pIgA [42, 43]. The signal 
of anti-HCV pIgA in these samples were low compared 
to anti-HEV and anti-HAV pIgA, but may be amplified 
through biotinylation.

Fig. 3  HCV serological profile over time. a Graphs of anti-HCV antibodies compared to viral RNA or ALT over time in two seroconversion panels 
demonstrate that dIgA may have a different profile compared to IgA (panel 901) and it disappears even in ongoing infection (panel 400062). b 
Scatterplots of anti-HCV reactivity in seroconversion panels show that unlike anti-HCV IgG and IgM, anti-HCV pIgA (and to some degree anti-HCV 
IgA) to be statistically significantly higher in early acute phase (0–4 weeks since 1st bleed) compared to chronically infected patients. Note: Unpaired 
comparisons between each acute phase/early incident timepoint and chronic samples conducted using Mann–Whitney U, two tailed with 
Bonferonni adjustment in GraphPad Prism
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ALT: alanine transferase; AST: aspartate aminotransferases; cSC: chimeric secre-
tory component; D: domain; dIgA: dimeric immunoglobulin A; DMEM: Dulbec-
co’s Modified Eagle Medium; ELISA: enzyme-linked immunoassay; HAV: hepati-
tis A virus; HCV: hepatitis C virus; HEK: human embryonic kidney; HEV: hepatitis 
E virus; HRP: horseradish peroxidase; hSC: human secretory component; Ig: 
immunoglobulin; PBS: phosphate buffered saline; pIgA: polymeric immuno-
globulin A; pIgR: polymeric immunoglobulin receptor; RNA: ribonucleic acid; 
rSC: rabbit secretory component; S/Co: signal-to-cut-off; SC: secretory compo-
nent; SD: standard deviation; SIgA: secretory immunoglobulin A.
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