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Abstract 

Objective:  This study was carried out with the purpose of testing the ability of deep learning machine vision to iden-
tify microscopic objects and geometries found in chemical crystal structures.

Results:  A database of 6994 images taken with a light microscope showing microscopic crystal details of selected 
chemical compounds along with 180 images of an unknown chemical was created to train and test, respectively 
the deep learning models. The models used were GoogLeNet (22 layers deep network) and VGG-16 (16 layers deep 
network), based on the Caffe framework (University of California, Berkeley, CA) of the DIGITS platform (NVIDIA Corpo-
ration, Santa Clara, CA). The two models were successfully trained with the images, having validation accuracy values 
of 97.38% and 99.65% respectively. Finally, both models were able to correctly identify the unknown chemical sample 
with a high probability score of 93.34% (GoogLeNet) and 99.41% (VGG-16). The positive results found in this study can 
be further applied to other unknown sample identification tasks using light microscopy coupled with deep learning 
machine vision.
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Introduction
The recent advances in computer technology have 
allowed an evolution of machine vision with deep learn-
ing artificial neural networks, making it possible to obtain 
accurate results of image analysis and object recognition 
in near real time. Deep learning machines are very pow-
erful systems for data analysis that integrate a set of tech-
niques used to identify objects through images, translate 
speech into text, expose products of interest to a group of 
users, and compile relevant information [1]. Recently, the 
deep convolutional neural networks (CNN) have shown 
exceptional performance in the image classification and 
object detection tasks, due to their deeper and wider 
multilayers grouped in convolutions that improves accu-
racy while making efficient use of computer resources 
and reducing processing time [1, 2].

This research was conducted to test the ability of deep 
learning machine vision to identify chemical crystals by 

their characteristic microscopic structure and geom-
etries, with the prospect of later using this method to 
identify microscopic pests and pathogens of food crops. 
Ziletti et al. [3] reported machine learning techniques for 
identifying chemicals from their crystal lattice structure 
patterns, which in turn were obtained from X-ray diffrac-
tion. Our study involves identification of crystal struc-
ture from light microscopy, not X-ray diffraction, and we 
could not locate previous studies where this light micros-
copy approach had been successfully implemented. A 
similar approach was previously implemented by Fuentes 
et al. [4] to develop a pest and disease detection system, 
using a deep learning-based detector.

In this study, eleven known chemical crystal samples 
were used to train two deep learning models for image 
classification: GoogLeNet and VGG-16, winning the first 
and second position at the ImageNet Large-Scale Visual 
Recognition Challenge in 2014 (ILSVRC14), respec-
tively [5]. The trained models were used to identify an 
unknown chemical found in an unmarked container in 
one of our agricultural research facility’s laboratories. 
The methodology developed in this research may be later 
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replicated in other research cases for the identification of 
microscopic objects and organisms.

Main text
Methods
The research was carried out at the Soil and Precision 
Agriculture Laboratory at the University of Florida, Cit-
rus Research and Education Center, (https​://crec.ifas.
ufl.edu/). A deep learning machine vision approach for 
image classification was applied to train two deep CNNs 
loaded with the weights of pre-trained models (Goog-
LeNet and VGG-16). The method of using pre-trained 
model weights rather than zero starting weights, greatly 
improves the rate of network learning during training. 
In this case, the networks were trained to recognize geo-
metric structures of chemical crystals and then identify 
an unknown chemical, through images captured by a dig-
ital microscope.

Experiment and data collection
The unknown chemical was a colorless prilled, water-
soluble, odorless material, which we suspected to be a 
fertilizer. Based on that assumption, eleven chemical 
compounds (common agricultural fertilizers and che-
lates) were carefully selected to create the crystal images 
database for training neural networks. Sucrose was 
included as a second organic compound to compare with 
fertilizer urea, and potassium bromide was added to con-
trast with closely related potassium chloride fertilizer.

A 1  M solution of each chemical was prepared using 
distilled water, then six drops of solution were added on 
a microscope slide, separated into three sections of two 
drops each. A total of 210 slides were prepared per chem-
ical, and three photos were taken per slide (one photo per 
section), for total number of approximately 630 photos 
per chemical. Before photography, the samples were sub-
jected to evaporation and crystallization in a drying oven 
at 30  °C, for a minimum period of 3 h, except for citric 
acid and sucrose, whose drying temperature were 55  °C 
for 7 h and 50  °C for 5 h, respectively. Special attention 
was given to hygroscopic chemicals: ammonium nitrate, 
urea and potassium nitrate, which were maintained in 
the oven (at 30  °C), to avoid the absorption of humidity 
and to preserve characteristics of the crystals.

The images were taken using a color digital microscope 
camera of 9 megapixels. All images were in RGB format, 
with a resolution of 3488 × 2616 pixels and region of 
interest (ROI) of 2300 × 1400 pixels covering the major 
area containing valid information in the image. The 
microscope magnification was set to 2.25× with a field 
of view of 8.9  mm. Light balance (contrast and bright-
ness) was adjusted when necessary to improve features 
visibility.

Methodology for sample preparation of the unknown 
chemical
In order to prepare samples of the unknown chemical at 
similar ranges of concentrations to the 11 known chemi-
cals, three solutions of the unknown chemical were pre-
pared, based on the averaged molecular weight of the 
11 known chemicals and respective standard deviation. 
The averaged molecular weight was 145.648  g/mol and 
the calculated standard deviation value was 84.998. The 
dummy molar weight calculated for each repetition of 
the unknown sample is indicated below:

•	 Repetition 1 (average) = 145.648 g/mol.
•	 Repetition 2 (average − Std.) = 60.65 g/mol.
•	 Repetition 3 (average + Std.) = 230.646 g/mol.

The solutions were prepared following the procedure 
previously described and subjected to evaporation and 
crystallization for 3  h at 30  °C. Each repetition had 60 
images and a total number of 180 images were used to 
test the model’s performance in image classification.

Data analysis
Image classification and probability analysis for object 
recognition were performed on a Linux server equipped 
with a graphics processing unit (GPU). We used two 
CNN models: GoogLeNet, a 22 weight layers, deep and 
wide CNN model with improved computation efficiency 
introduced by Szegedy et  al. at the ILSVRC14 [6], and 
VGG-16, a 16 deep weight layers model, mostly used 
as feature extractor for image classification and object 
identification [7]. The two models are based on the Caffe 
framework of the DIGITS platform (Deep Learning GPU 
Training System) of the NVIDIA GPU [8]. Image classifi-
cation probability results from GoogLeNet and VGG-16 
models were analyzed by analysis of variance and Dun-
can’s multiple range test using GenStat (VSN Interna-
tional, Hemel Hempstead, UK).

Training methodology for GoogLeNet and VGG‑16
The training process allows the system to recognize, dif-
ferentiate and classify the dataset being analyzed and 
finally identify any unknown data based on supplied 
information. In this work, both models were trained with 
the AdaDelta algorithm, a gradient-based optimization 
method [9]. The base learning rate was set to 0.1 using 
an exponential decay function [10]. By default, the total 
number of training epochs was 30 with one snapshot per 
interval and one validation interval.

All images in the database were used for training and 
validation, subdivided into two sets of 75% for training 
and 25% for validation. The images were first resized by 
the DIGITS software to a fixed resolution of 256 × 256 
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pixels. Two data augmentation methods were applied 
to the training set by the DIGITS software. The first 
was image translation and horizontal reflections or flip-
ping, and the images were cropped by the DIGITS soft-
ware to the size of 224 × 224 pixels (the image input size 
used inside the convolutions) and a mirror-image copy 
was generated. The second was RGB color shift to alter 
RGB intensity in the images [6, 7, 11].

For the unknown test sample analysis, three rep-
etitions of 60 unknown images were used and the input 
image size for testing was 224 × 224. During testing, both 
models applied multidimensional image re-sizing (multi 
cropped images) derived from 256 × 256, to improve 
the model’s performance by using images with different 
dimensions, allowing more visibility of the object features 
[6, 7].

Results
Chemical crystal image database
A database consisting of 6994 images from the eleven 
chemical crystals was created and all images were used 
for training. For testing, the total number of crystal 
images was 180, 60 images for each repetition. To be used 
for testing, the unknown chemical images were saved 

outside the database, with each repetition in a respective 
folder.

All images were taken under the same resolution 
(3488 × 2616 pixels) and microscopic magnification 
(2.25× with a field of view of 8.9  mm). The only differ-
ence among them was light balance (brightness and con-
trast), caused by the nature of the crystal. Table 1 shows 
the distinctive visual characteristics of the images.

Training results of GoogLeNet and VGG‑16 models
The results presented in Fig.  1, shows that both mod-
els achieved high accuracy values during training. The 
GoogLeNet model reached maximum accuracy value in 
training epoch 24, with validation accuracy percentage 
of 97.38% and a loss of 0.09. The VGG-16 model pre-
sented the most uniform accuracy and loss curves. From 
epoch 1, the model already presented accuracy values 
above 90%, after which it was aborted since no significant 
improvements in accuracy values were observed. The 
model reached the highest accuracy value of 99.65% and 
a minimum loss of 0.014. Epoch 24 for GoogLeNet and 5 
for VGG-16 were chosen to test the model performance 
in image classification.

Table 1  Database of crystal images and respective image number

Crystal 
name

Ammonium 
phosphate 
monobasic

Ammonium 
nitrate

Ammonium 
sulfate

Citric acid 
anhydrous Cupric Sulfate Potassium 

bromide

Image

Image 
number 630 669 625 637 633 625

Crystal 
name

Potassium 
chloride

Potassium 
nitrate

Potassium 
phosphate 
monobasic

Sucrose Urea Total number 
of images

Image
6,994

Image 
number 630 631 630 628 656

Unknown chemical
Repetitions 1 2 3 Total number of images

Images 180

Image number 60 60 60
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Probability and image classification results
In the image classification and associated probabil-
ity analysis both models presented similarities regard-
ing the top five predicted classes, shown in Fig. 2. From 
the five classes predicted with highest probabilities by 
the GoogLeNet model, urea presented the highest aver-
age probability percentage of 93.34%, which was very 
highly significantly different (p < 0.001) from the remain-
ing classes (Fig.  2A). Average probabilities for sucrose 
(5.12%), and citric acid (1.2%) were the second and third 
highest, respectively.

The VGG-16 model presented the same five highest-
ranked chemical classes as GoogLeNet, but with a slightly 
different order (Fig. 2B). Urea, with an average probabil-
ity of 99.41%, was again very highly significantly differ-
ent (p < 0.001) from the remaining classes. Sucrose had 
the second-highest average probability ranking, but was 
very low (0.36%), and not significantly different from all 
the remaining lower-ranked classes (Fig. 2B). Both mod-
els identified the unknown chemical as urea with very 
high average confidence (> 93%, Fig. 2A, B). The similari-
ties between urea used for training the models, and the 
unknown chemical crystals images are shown in Table 1.

Discussion
The results obtained in this study shows excellent per-
formance of both deep learning models in training and 
image classification. Thus, both models were able to iden-
tify urea as the unknown chemical. However, VGG-16 
performed slightly better than GoogLeNet in both train-
ing and in image classification. In the classification phase 
(Fig. 2), VGG-16 achieved a higher average true positive 
result for urea (99.41%) than GoogLeNet (93.34%), and a 

Fig. 1  Training results for GoogLeNet and VGG-16 models, with accuracy (ascending curves) and loss (descending curves)

Fig. 2  Probability analysis and image classification comparative 
results for A GoogLeNet and B VGG-16 models. Figure bars identified 
with different letters (a–c) are significantly different from each other
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lower false positive result for sucrose (0.36% and 5.12% 
for VGG-16 and GoogLeNet, respectively). According to 
Simonya and Zisserman [7], this improved performance 
of VGG-16 can be attributed to the initial layers with a 
small receptive field, which were designed to make the 
decision function more discriminative. Whereas, the 
GoogLeNet architecture starts with a big receptive field, 
intended to improve computer efficiency by decreasing 
the computation requirements [6]. From the ILSVRC14, 
Russakovsky et  al. [5] reported that the GoogLeNet has 
more difficulties in recognizing small features or complex 
images, which agrees with our findings that GoogLeNet 
was less accurate in detecting microscopic crystalline 
structures.

Deep architectures are normally associated with 
improved accuracy and performance in image classifica-
tion. Our study agrees with others including Simonya and 
Zisserman, and Fuentes et al., which found that VGG-16 
outperformed deeper VGG models [7], as well as two 
other deep networks (ResNet-50 and ResNeXt-50) [4]. 
The GoogLeNet model, however, uses inception mod-
ules, which increases the efficiency of computer resources 
(time and energy, particularly with large datasets) with 
improved accuracy in image classification tasks.

Conclusions
Both deep learning models yielded excellent results when 
using image classification to identify samples of differ-
ent chemical crystals. Training accuracy values of 97.38% 
and 99.65% were obtained for GoogLeNet and VGG-
16, respectively, showing that deep learning is a suitable 
method to identify materials and objects using digital 
light microscopy images. Both models used in this study 
recognized urea as the unknown chemical, with average 
probabilities ranging from 93.34 to 99.41%.

Based on the results of this study, deep learning 
machine vision has high potential to be used for the auto-
mated microscopic identification of other materials and 
small objects which can be imaged with light microscopy.

Limitations

•	 Hazardous chemicals and those that react danger-
ously with water, or have high volatility, were not 
included in this study and are not recommended.

•	 Some hygroscopic chemicals were not included. 
These chemicals hardly get dry and absorb humidity 
in the environment too quickly.

•	 When the number of images and classes in the data-
base is small, the models are unable to correctly clas-
sify the different categories.
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