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Abstract 

Objective:  This study considers the use of a rapid molecular assay to evaluate apolipoprotein E (ApoE) status in 
military subjects who have been exposed to high altitude. We hypothesize that ApoE status may be protective against 
developing brain white matter hyperintensities (WMHs) after high altitude exposure.

Results:  We tested 92 subjects who had been exposed to altitudes above 25,000 ft mean sea level, either as pilots or 
as altitude chamber technicians. We determined subject genetic status using rapid Taqman-style polymerase chain 
reaction genotyping and evaluated the association of ApoE subtype versus brain lesions using t-tests and two-way 
analyses of variance. Our results indicate that there is no significant association between ApoE genotype status and 
the presence of WMHs after high altitude exposure. We did observe a significantly higher number of hours spent at 
altitude for subjects with the ApoE E2 allele; however, the mechanism by which this may occur is not determined in 
this study. To more fully elucidate this effect, larger populations would be required to observe greater numbers of 
subjects with the E2 and E4 alleles.
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Introduction
Genetic variants of the apolipoprotein E (ApoE) gene have 
been associated with several neurodegenerative disorders 
including Alzheimer’s disease, cognitive impairment, and 
multiple sclerosis, as well as with varying rates of recov-
ery from traumatic brain injury [1–3]. In the brain, non-
neuronal cell types, most notably astroglia and microglia, 
are the primary producers of ApoE proteins, while neu-
rons preferentially express the receptors for ApoE.

The ApoE4 genotype, specifically, is associated with an 
increased risk of developing Alzheimer’s disease (20% in 
controls vs. 90% in ApoE4 patients) [4, 5] and a decreased 

average age of onset from 84 to 68 years, respectively [4]. 
The mechanism by which ApoE4 participates in disease 
pathogenesis is not known. Paradoxically, the same geno-
type is associated with increased neuroprotection against 
Alzheimer’s disease provided by consumption of fish [6].

In a meta-analysis of 42 published studies conducted by 
Schilling et al. the ApoE4 and ApoE2 genes were associ-
ated with increasing burden in magnetic resonance imag-
ing (MRI) markers for both hemorrhagic and ischemic 
cerebrovascular disease, while ApoE2 correlated with 
increasing brain white matter hyperintensities (WMHs) 
[7]. In previous studies from our group [8, 9], increased 
WMH burden was associated with repetitive non-
hypoxic hypobaric exposure, neurologic decompression 
sickness, and lower neurocognitive test performance as 
measured on computer-based neurocognitive tests. High 
altitude aviators are at risk for decompression sickness, 
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with an anonymous survey noting a self-reported preva-
lence of 75.5% [10].

Because these lesions are destructive to the normal 
brain architecture, WMHs may be considered a form of 
traumatic brain injury. In high altitude exposed individu-
als, these lesions are presumed to be secondary to repeti-
tive hypobaric exposure exacerbated by an increased 
operation tempo and increased workload during expo-
sure. Determining the etiology of WMHs may lead to 
important mitigation strategies for high altitude opera-
tors. We hypothesized that ApoE status may be a contrib-
uting risk factor in developing WMHs after high altitude 
exposures.

Main text
Methods
Study design and MRI data collection
We recruited high altitude aviators from both pilot 
(n = 44) and altitude chamber operator career fields 
(n = 48). All subjects were male and had brain MRI 
results obtained from a previous study. All participants 
were healthy and were selected for the MRI as a con-
sequence of career selection, not as a result of clinical 
complaint. This study was approved by the Air Force 
Research Laboratory’s Institutional Review Board 
(FWR20160040H).

Sample collection and laboratory analysis
We provided consenting subjects with blood tubes and 
directed them to report to their local medical treatment 
facility for phlebotomy. Blood samples were sent from 
the treatment facility to our research laboratory for pro-
cessing. Nucleic acids were extracted using the Promega 
Maxwell 16 Blood DNA Purification kit and we obtained 
ApoE genotype status by performing two polymerase 
chain reaction genotyping assays (rs7412 and rs429358). 
Commercially produced Taqman-style assays were pur-
chased directly from Thermo Fisher and the assays were 
performed on an Applied Biosystems 7500 FAST real-
time thermocycler. The two genotyping assays were veri-
fied using 10 control samples obtained and pretested at a 
reference lab.

Statistical analysis
We evaluated the association between ApoE geno-
type status and each of the phenotype variables using 
GraphPad Prism 7.0c. Two-way analysis of variance was 
performed with genotype as a primary factor and the 
phenotypes as the other contributing factors. Parameters 
for the multiple t-tests performed included the assump-
tion of similar scatter and a 10% false discovery rate 
using the two-stage step-up method of Benjamini et  al. 
[11]. Descriptive statistics were also obtained in Prism 7, 
including the mean, median, deviations, and ranges.

Results
Overall ApoE allele frequencies were consistent with 
the global allele distribution [12]: ApoE2 = 7.6%, 
ApoE3 = 78.8%, and ApoE4 = 13.5%. These alleles were 
spread across four genotypes: ApoE2/ApoE3, ApoE3/
ApoE3, ApoE3/ApoE4, and ApoE4/ApoE4. Performing 
a two-way analysis of variance revealed that the ApoE 
genotype status accounted for 0.21% of the total vari-
ance in the population, the interaction between genotype 
and collected phenotypes accounted for 1.99%, and the 
differences in the phenotypes themselves accounted for 
16.92% of the variance. The effects of both the interaction 
and the genotype are not considered significant. Addi-
tionally, performing multiple t-tests to evaluate possible 
associations between genotype and WHM lesion count 
or volume revealed no significant associations (Table 1).

One interesting result discovered was a positive 
association between genotype and hours flown above 
25,000 ft mean sea level (Table 2). The subjects with the 
ApoE2/ApoE3 genotype had significantly more hours 
above this altitude than those with the ApoE3/ApoE3 or 

Table 1  Statistical analysis of multiple t-tests comparing genotype versus WMH lesions

Genotype comparison WMH count 
p-value

WMH volume 
p-value

Genotype comparison WMH count 
p-value

WMH 
volume 
p-value

ApoE2/ApoE3 vs. ApoE3/ApoE3 0.92 > 0.99 ApoE3/ApoE3 vs. ApoE3/ApoE4 0.95 > 0.99

ApoE2/ApoE3 vs. ApoE3/ApoE4 0.97 > 0.99 ApoE3/ApoE3 vs. ApoE4/ApoE4 0.93 > 0.99

ApoE2/ApoE3 vs. ApoE4/ApoE4 0.97 > 0.99 ApoE3/ApoE4 vs. ApoE4/ApoE4 0.95 > 0.99

Table 2  Range of accumulated exposures above 25,000 ft 
mean sea level by genotype

Genotype Median Upper Lower Mean Deviation (%)

ApoE2/ApoE3 490.5 1630 21 631.4 527.5

ApoE3/ApoE3 139 2000 9 387.2 461.0

ApoE3/ApoE4 202 1700 12 405.7 455.2

ApoE4/ApoE4 665 1157 173 665 695.8
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ApoE3/ApoE4 genotypes (p-values of 1.1e−9 and 6.2e−6, 
respectively). There was no significant association discov-
ered for ApoE2/ApoE3 or ApoE4/ApoE4. However, since 
there were only two subjects with the latter genotype, no 
statistical inferences can be made. Looking further into 
the flight hour details uncovered a wide range of values 
for the test population. The range of times for the entire 
population was from 9 to 2000 h.

Discussion
As more high performance aircraft are being developed 
with service ceilings greater than 50,000 ft, it is becoming 
increasingly important to understand the impact of alti-
tude on human performance. In addition to high altitude 
aviators and operators (including military freefall para-
chutists and aerospace physiologists), the identification 
of risk factors for altitude-induced illness could influence 
decisions of adventurers, travelers, and even civilians 
moving to or living in mountainous regions. Additionally, 
members of the commercial airline industry may benefit 
from a greater understanding of the relationship between 
altitude, disease, and genetics.

Although our hypothesis was disproven by our results, 
we feel that this study provides critical information in 
that at least one of the genetic markers related to neuro-
degeneration is not an apparent risk factor for altitude-
induced brain injury. There may be a protective effect 
of ApoE status that contributes to a significantly higher 
number of hours spent at altitude for subjects with the 
ApoE2 allele; however, the mechanism by which this may 
occur was not determined in this study. To more fully elu-
cidate this effect, larger populations would be required to 
observe greater numbers of subjects with the ApoE2 and 
ApoE4 alleles. Our subject population includes a repre-
sentative sampling of between 50% and 90% of currently 
qualified high altitude pilots [13], and approximately 
1% of the total population of high altitude pilots ever to 
have flown. Therefore, our results are expected to highly 
reflect the true population.

Another alternative to identify if ApoE is implicated 
in WMH development would be to assess polymor-
phisms in the gene’s promoter region. To that end, we 
are currently exploring the hypothesis that there is an 
association between either variant rs405509 (-219G/T) 
or rs769446 (-427T/C) and WMH development. These 
variants have been associated in the past with brain func-
tional decline and may be a confounding factor in alti-
tude-induced injury [14, 15]. We anticipate developing 
a better understanding of ApoE’s role in altitude-related 
negative effects through the currently reported results 
regarding ApoE status and the up-coming work on pro-
moter genotypes.

Limitations
This study focused on a single gene and had a small 
sample size with widely varying phenotype data. Addi-
tional studies of larger numbers of subjects with high 
altitude exposure may provide further insight into pos-
sible genetic risk factors for altitude-induced neurode-
generative outcomes. Alternative hypothesis testing of 
additional genes, and/or larger studies with genome-wide 
technologies, may identify relevant markers.
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hyperintensity.
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