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Abstract 

Objective:  Identification of Salmonella Typhi by conventional culture techniques is labour-intensive, time consum-
ing, and lack sensitivity and specificity unlike high-throughput epidemiological markers that are highly specific but 
are not affordable for low-resource settings. SCAR, obtained from RAPD technique, is an affordable, reliable and 
reproducible method for developing genetic markers. Hence, this study investigated the use of SCAR as an alternative 
molecular epidemiological marker for easy identification of S. Typhi in low-resource settings.

Results:  One hundred and twenty RAPD primers were screened through RAPD-PCR against a panel of common 
enterobacteriaceae for the best RAPD band pattern discrimination to develop SCAR primers that were used to develop 
a RAPD-SCAR PCR. Of this number, 10 were selected based on their calculated indices of discrimination. Four RAPD 
primers, SBSA02, SBSA03, SBSD08 and SBSD11 produced suitable bands ranging from 900 to 2500 bp. However, only 
SBSD11 was found to be specific for S. Typhi, and was cloned, sequenced and used to design new SCAR primers. The 
primers were used to amplify a panel of organisms to evaluate its specificity. However, the amplified regions were 
similar to other non-Typhi genomes denoting a lack of specificity of the primers as a marker for S. Typhi.
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Introduction
Typhoid fever, a systemic disease caused by the bacte-
rium Salmonella enterica subspecies enterica serovar 
Typhi (S. Typhi), is global in distribution but more prev-
alent in Oceania, Africa, Latin America and Asia with 
prevalence rates of 15.4, 49.8, 53.1, and 274.3 per 100,000 
population, respectively [1].

For S. Typhi identification and genotyping, conven-
tional culture techniques are labour intensive, time con-
suming, expensive, and lack sensitivity and specificity [2, 

3]. In fact, epidemiologically unrelated S. Typhi isolates 
are often so similar and look identical using most typing 
techniques [4]. On average, an estimated time span of 
4–7 days is required to obtain a positive result, excluding 
the time for serotyping [5, 6]. Currently, high throughput 
epidemiological markers such as pulse-field gel electro-
phoresis (PFGE) and single nucleotide polymorphism 
(SNP) markers are employed to track and monitor S. 
Typhi and the disease it causes [7–9]. However, these 
markers are expensive to develop and are not readily 
affordable in low-resource settings where the disease is 
mostly endemic.

Random amplified polymorphic DNA-PCR (RAPD-
PCR) is a rapid and sensitive PCR method that enables 
the amplification of independent genetic loci of the target 
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genome. It has been developed for genetic mapping, fin-
gerprinting, and is widely used in inter- and intra- specific 
population polymorphism analyses of different organ-
isms [10]. It has proved to be a powerful tool for dis-
criminating different species or subspecies of organisms, 
and for genetic analysis or phylogenetic relationships 
among strains for a variety of microorganisms, plants, 
and mammals [11, 12]. In addition, it has been used for 
strain discrimination in various S. enterica serovars [13–
16]. However, this method has an underlying disadvan-
tage of being less reliable due to its sensitivity to reaction 
parameters such as quality of DNA template, concentra-
tions of PCR components and PCR cycling conditions 
[17, 18]. Sequence characterised amplified region (SCAR) 
is derived by converting RAPD markers through clon-
ing and sequencing the two ends of the amplified poly-
morphic RAPD fragments [19]. SCAR markers are more 
reliable, efficient and advantageous than RAPD markers 
because they are reproducible, less sensitive to reaction 
parameters and able to detect a single locus. Hence, these 
qualities allowed its use as a genetic marker [19–21].

Because of the known irreproducible nature of 
RAPD-PCR as a genotyping method within the scien-
tific community, RAPD-SCAR using a pair of specific 
oligonucleotide primers derived from RAPD-PCR was 
explored. Although successfully used in plant and ani-
mal studies [22–26], the technique has been transferred 
to bacteria with varying degrees of successes. Hence, the 
present study was designed to investigate the possibility 
of developing SCAR marker as an alternative epidemio-
logical marker for easy identification of S. Typhi in low-
resource settings.

Main text
Methods
Bacteria isolates
A panel of 26 genomic DNA samples were used in this 
study. Sixteen S. Typhi isolates, previously differentiated 
by pulsed-field gel electrophoresis (PFGE) and differing 
in district and year of isolation [27, 28], were obtained 
from Hospital Universiti Sains Malaysia (HUSM), Kubang 
Kerian, Kelantan. The other ten isolates were either pur-
chased from the American Type Culture Collection 
(ATCC) or obtained from the Biobank of the Institute 
for Research in Molecular Medicine (INFORMM), USM, 
Kelantan. These include Salmonella Paratyphi A (ATCC 
9150), Salmonella Paratyphi B (ATCC BAA 1250), Sal-
monella Paratyphi C (ATCC 9068), Salmonella Typhimu-
rium (ATCC 14028), Salmonella Poona (ATCC 04840), 
Salmonella Enteritidis (ATCC 13076), Shigella son-
nei, Yersinia enterocolitica, Klebsiella pneumoniae and 
Escherichia coli.

Genomic DNA extraction
This was achieved using QIAGEN® DNA extraction kit, 
(DNeasy® Blood and Tissue Kit, USA). DNA concen-
tration was measured using nanodrop (NANODROP 
2000c, USA).

RAPD primers
Six kits of RAPD primers, (SBS A-F from SBS Genetech 
Co., Ltd. China), containing 20-decamer oligonu-
cleotides each, were used. The primers have melting 
temperatures (Tm) of either 32  °C or 34  °C with a GC 
content of 60% or 70%, respectively.

Screening and selection of RAPD primers
All six kits (SBS A-F) were screened to select primers 
that have the best pattern discrimination. The opti-
mized RAPD-PCR method [29] and three random 
S. Typhi isolates that had been previously differenti-
ated using PFGE were used for the screening. A crite-
rion was set by calculating the index of discrimination, 
defined as the ratio of maximum number of bands to 
minimum number of bands for the three isolates. Fur-
thermore, an additional criterion was set for primers 
with the least ratio scores, which is “a primer with least 
ratio score that has higher maximum number of bands 
will be selected over a primer with lower maximum 
number of bands”. Therefore, 10 primers were selected 
for subsequent RAPD-PCR screening of the 26 isolates.

RAPD‑PCR assay
The optimised RAPD-PCR method of Ja’afar et al. [29] 
was adopted while the method of Melotto et  al. [30] 
was adopted for SCAR marker development.

Gel purification, cloning and sequencing of RAPD‑PCR 
product
Clear RAPD bands that were only present in S. Typhi 
were gel-purified using QIAGEN® gel extraction kit 
(QIAquick® Gel Extraction Kit, USA) and cloned using 
QIAGEN® cloning kit (QIAGEN® PCR Cloningplus Kit, 
USA). Plasmids of positive clones were extracted using 
QIAGEN® plasmid extraction kit (QIAprep® Spin Min-
iprep Kit, USA) and sent to First BASE Laboratories 
Sdn. Bhd., Malaysia for sequencing.
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Primer design and validation of SCAR primers
Sequence homology search for each sequence was per-
formed within GenBank’s database [31] and unique 
primers were designed, synthesized and validated.

Results
Selected RAPD primers
The number of PCR bands was based on amplifica-
tion of three selected S. Typhi isolates (STY083 (ATCC 
7251), STY088 and STY231) that had been previ-
ously differentiated by pulsed-field gel electrophoresis 
(PFGE). Primers with high ratio scores had both high 
and low number of bands in at least two of the three 
isolates (Fig.  1a). It does not mean that the primer 
yielded higher number of bands in all isolates. In fact, 
primers with higher or equal number of bands in all 
isolates had low ratio scores (Fig. 1b). Conversely, prim-
ers with least ratio scores had no amplification in at 
least one of the isolates (Fig. 1c). In such instance, they 
were scored for the isolate(s) that had at least one band 
only.

RAPD‑PCR bands selection
Out of the ten RAPD primers, four (SBSA02, A03, D08 
and D11) produced suitable bands (ranging from 900 to 
2500 bp) for SCAR marker development (Fig. 2a–d).

RAPD‑PCR product cloning
Eluted DNA of the three S. Typhi isolates from each of 
the four primers above (12 in total) were used for clon-
ing reactions. Only the three DNA products from primer 
SBSD11 that produced positive clones were sent for 
sequencing.

Primer design for SCAR markers
Sequencing results from both T7 and SP6 promoter 
regions of the pDrvie plasmid provided the sequence 
composition of the cloned DNA fragment. The sequences 
were bioinformatically stringed using MEGA software 
(Version 5.2, [32]). Blasting the sequence against the non-
redundant database of NCBI showed that it encodes a 
Type IV secretory pathway protein, virB4 component and 
a lipoprotein in S. Typhi and a hypothetical protein in S. 
Typhimurium.

Fig. 1  Example of scoring for different primers. Primers had both high and low bands in at least two isolates (a); equal number of bands in all 
isolates (b); no amplification in at least one isolate (c). M: Marker; STY083, STY088 and STY231: S. Typhi isolates
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Validation of SCAR primers
The recombinant pDrive plasmid was used as template 
DNA to optimize both annealing temperature and 
PCR reaction conditions of the synthesized primers 
(Fig. 3a). Following optimization, the primer was used 

to amplify the panel of organisms for confirmation. 
However, the amplified regions were similar to other 
non-Typhi genomes denoting lack of specificity of the 
primer as a marker for S. Typhi (Fig. 3b).

Fig. 2  RAPD primers showing suitable bands for SCAR marker development. a Primer SBSA02 showing a 2 Kbp band found only amongst S. Typhi 
isolates. b Primer SBSA03 showing a 900 bp band found in both S. Typhi, S. Paratyphi C and E. coli. c Primer SBSD08 showing a 2.5 Kbp band found 
only in S. Typhi. d Primer SBSD11 showing a 1.4 Kbp band found in both S. Typhi, S. Typhimurium and Y. enterocolitica. M: 100 bp and 1 Kbp ladders, 
respectively

Fig. 3  a Optimized SCAR-PCR assay using recombinant pDrive plasmid as DNA template. Optimum annealing temperature was 56 °C. M: 100 bp 
and 1 Kbp ladders, respectively. b Gel showing results of PCR assay using specific SCAR primer. M: 100 bp and 1 Kbp ladders, respectively
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Discussion
In an effort to develop a simple, fast and cost effective 
molecular epidemiology marker for identifying S. Typhi 
from other Salmonella species, 120 random primers were 
screened through RAPD-PCR against a panel of common 
enterobacteriaceae to develop SCAR primers that were 
used for RAPD-SCAR PCR.

During RAPD primer screening, some inconsistent 
amplifications were observed. In some instances, no 
bands were seen for certain primers, while some gener-
ate complex band patterns that were difficult to interpret. 
These sorts of inconsistencies have been reported pre-
viously whereby no amplification, difficult to interpret 
complex patterns, and primer artefacts, were observed 
[33, 34]. More so, lack of amplification observed with 
some primers could be attributed, theoretically, to the 
distance of the primers on the 5′ and 3′ directions on the 
template DNA. A distance of more than 4 kbp between 
the primers on the 5′ and 3′ directions has been reported 
to result in no amplification [35].

RAPD-PCR screening of bands for SCAR marker 
development was done using four primers, SBS-A02, 
-A03, -D08 and -D11, with suitable bands ranging from 
900–2500 bp (Fig. 2a–d). Following cloning, only primer 
SBSD11 produced positive clones that were sent for 
sequencing. A specific SCAR primer set was designed 
for this sequenced fragment. The SCAR primer had, in 
addition, the original RAPD primer sequence in order 
to confirm the fragment’s specificity to S. Typhi. After 
PCR optimization with the SCAR primer (Fig.  3a), 
another PCR was performed on the same panel of bacte-
ria (Fig. 3b). The procedure was successful as it was able 
to identify all S. Typhi isolates. However, other subspe-
cies enterica were also amplified though non-salmonella 
isolates such as E. coli, Y. enterocolitica and K. pneumo-
niae were not amplified (Fig. 3b). Inference to this phe-
nomenon was drawn through published literatures. 
First, it could be explained by the fact that the isolates 
tested were all from the same subspecies, enterica, and 
that they share similar genetic content [36]. It has been 
reported that the serovars Typhi and Typhimurium share 
genetic homology in important pathogenicity elements 
[37]. Similarly, Parkhill et al. [38] has demonstrated that 
of the 204 pseudogenes present in S. Typhi, 75 of them 
were involved in housekeeping functions in other sero-
vars. Pseudogenes are genes that have lost functions due 
to insertions, deletions or substitutions [38]. Further-
more, Chan et al. [39] have shown the close relationship 
of serovar Typhi to serovars Paratyphi A and Sendai in a 
microarray study. In the same manner, high similarity in 
gene contents has been reported for serovar Typhi strain 
CT18 and serovar Paratyphi A strain ATCC 9150 [40]. 
Therefore, the SCAR primer designed in this study may 

anneal to target sequences found in closely related sero-
vars. Affirmatively, Aksoy [41], when identifying SCAR 
markers for S. Typhimurium, reported similar findings to 
this work. In the study, the 700 bp band found to be spe-
cific to S. Typhimurium by RAPD-PCR could not be used 
for further studies.

However, successful use of SCAR markers has been 
reported for Trypanosoma cruzi [42] most probably 
due to the conservative nature of its genome and for the 
analysis of genomic instability in breast cancer tissues 
[43]. Other successful applications of SCAR markers 
have been for the detection of Agrobacterium vitis in rice 
[44], Pseudomonas brassicacearum as a biological control 
agent of snow mould in winter wheat [20] and Xylella fas-
tidiosa in grape vine disease [45]. Similarly, it has been 
utilised in the identification of strawberry genotypes car-
rying red stele resistance gene for mass breeding [46, 47], 
preservation of an endangered ornamental tree species 
[48] and for adulteration detection [49, 50].

Conclusion
Although the SCAR marker developed in this study to 
specifically identify S. Typhi was successful, yet other 
serovars of the subspecies enterica were also amplified, 
suggesting the limited specificity of SCAR markers as 
alternative to the gold-standard, PFGE, in the identifica-
tion of S. Typhi. However, the marker developed could 
instead, be used as a preliminary screening tool for Sal-
monella enterica subspecies rather than identifying a 
specific Salmonella serovar due to homologous nature 
of their genomes. More so, more research on this topic 
needs to be done to preclude the use of SCAR markers in 
Salmonella species.

Limitations
The need for stringent thermocycling conditions for 
RAPD assay optimization, limits the speed of SCAR 
development for S. Typhi even though the assay is low 
cost. Similarly, laboratory differentiation of isolates in 
closely related species, such as Salmonella enterica, is dif-
ficult due to sequence homology of their genomes.
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