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Abstract 

Objectives:  Altered DNA methylation and microRNA profiles are associated with diabetic kidney disease. This study 
compared different sequencing approaches to define the genetic and epigenetic architecture of sequences sur-
rounding microRNAs associated with diabetic kidney disease.

Results:  We compared Sanger and next generation sequencing to validate microRNAs associated with diabetic kid-
ney disease identified from an epigenome-wide association study (EWAS). These microRNAs demonstrated differential 
methylation levels in cases with diabetic kidney disease compared to controls with long duration of type 1 diabetes 
and no evidence of kidney disease (Padjusted < 10−5). Targeted next generation sequencing analysis of genomic DNA 
and matched cell-line transformed DNA samples identified four genomic variants within the microRNAs, two within 
miR-329-2 and two within miR-429. Sanger sequencing of genomic DNA replicated these findings and confirmed the 
altered methylation status of the CpG sites identified by the EWAS in bisulphite-treated DNA. This investigation suc-
cessfully fine-mapped the genetic sequence around key microRNAs. Variants have been detected which may affect 
their methylation status and methylated CpG sites have been confirmed. Additionally, we explored both the fidelity of 
next generation sequencing analysis and the potential efficacy of cell-line transformed DNA samples in place of finite 
patient samples in discovery genetic and epigenetic research.
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Introduction
Diabetic kidney disease (DKD) is a major complication 
of diabetes mellitus (DM) and the most common cause 
of chronic kidney disease (CKD) worldwide [1–3]. DKD 
is also associated with an increased risk of cardiovascu-
lar mortality [4, 5]. DKD has a complex aetiology, yet 
individual risk is greatly influenced by genetic predispo-
sition [6].

Advances in next generation sequencing (NGS) tech-
nologies and analytical approaches have resulted in more 

cost-effective sequencing [7], accelerating the rate of 
genetic research [8]. However, NGS costs are still pro-
hibitive for many laboratories, limiting its utility in large-
scale studies of the methylome using high-density arrays 
[9, 10].

Several genome-wide association studies (GWAS) and 
meta-analyses have been undertaken to detect common 
genetic variants associated with DKD. These investiga-
tions identified single nucleotide polymorphisms (SNPs) 
associated with DKD including FRMD3 [11], CARS [11], 
ACACB [12], AFF3 [13], CDCA7 [14], CUBN [15] and 
EPO [16] genes.

Epigenetic modifications influence both DNA and RNA 
regulation without altering the underlying sequence and 
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may contribute to the inherited predisposition of DKD 
[17, 18]. DNA methylation is significantly altered in DM 
with higher levels of methylation reported in individuals 
with DKD [19]. MicroRNAs (miRNAs) are small highly 
conserved non-coding RNA molecules that act as epige-
netic modifiers in the regulation of many protein-coding 
genes [20, 21] and gene expression [22]. MiRNAs play a 
vital role in many diseases [23].

Induction of miRNAs in renal cells is associated with 
accumulation of extracellular matrix proteins implicated 
in kidney fibrosis and glomerular dysfunction [21]. Sev-
eral miRNAs have been reported previously in associa-
tion with DKD including miR-135a [24], miR-200b [25] 
and miR-377 [26]. MiRNAs may represent biomarkers for 
this disease but further mechanistic studies are required 
to elucidate their effects.

This study compared sequencing approaches to inves-
tigate differentially methylated miRNAs associated with 
DKD identified from an epigenome-wide association 
study (EWAS). The aims were to determine genetic vari-
ants and epigenetic marks in the miRNAs associated with 
DKD and their surrounding sequences, and to perform a 
direct comparison of the results between blood-derived 
genomic DNA (gDNA) and DNA from Epstein-Barr 
virus transformed cell-lines derived from the same par-
ticipants. This provided an opportunity to evaluate the 
more readily available transformed cell-line DNA sam-
ples as a proxy for the finite supply of gDNA.

Main text
Methods
Sample cohort
All participants were of Caucasian ancestry from the 
UK or ROI and provided written informed consent for 
research. DNA was extracted from whole blood using 
the salting out method, normalised following PicoGreen 
quantitation, and frozen in multiple aliquots. Cell-line 
DNA was obtained following Epstein-Barr virus transfor-
mation of participants’ lymphocytes into cell lines per-
formed by the European Collection of Authenticated Cell 
Cultures (ECACC) [27].

Participants were part of the All Ireland-Warren 
3-Genetics of Kidneys in Diabetes (GoKinD) UK Col-
lection. Cases (n = 150) were defined as individuals with 
≥ 10  years duration of type 1 diabetes (T1D) who had 
also been diagnosed with DKD defined as hyperten-
sion (blood pressure ≥ 135/85  mmHg) and persistent 
macroalbuminuria (≥ 500  mg/24  h). Diabetic controls 
(DCs, n = 100) were individuals with ≥ 15  years dura-
tion of T1D and no evidence of renal disease on repeat 
testing. Control subjects all had an estimated glomeru-
lar filtration rate (eGFR) > 60  mL/min/m2 whereas each 
case subject had CKD based on presence of persistent 

macroalbuminuria and eGFR < 60  mL/min/m2. Partici-
pant characteristics are included within Additional file 1: 
Table S1.

Discovery 450K methylation
Blood-derived gDNA for each individual was bisulphite 
treated (BST) using the EZ-96 DNA Methylation-Gold™ 
Kit (Zymo Research, USA).

To assess the methylation status of the cytosine-
phosphate-guanine (CpG) sites, the Infinium Human 
Methylation 450K BeadChip array was used follow-
ing the manufacturer’s instructions. Cases and controls 
were randomly distributed across each array. This high 
throughput platform evaluated individual methylation 
levels (β values) for each CpG site, ranging from 0 for 
unmethylated to 1 for complete methylation. Raw meth-
ylation data was adjusted for dye bias and quantile nor-
malised as previously reported [28]. Quality control (QC) 
included evaluation of the bisulphite treatment conver-
sion efficiency, dye specificity, hybridisation, staining 
and the inclusion of 600 integral negative controls for the 
EWAS.

The significant methylation values between cases and 
controls for all probes which passed QC were adjusted 
for multiple testing using the Benjamini and Hochberg 
approach [29]. All miRNAs that demonstrated signifi-
cantly altered levels of DNA methylation (p < ×10−5) 
were selected from our previous EWAS [28] for this vali-
dation and fine-mapping study.

NGS: targeted DNA sequencing
Targeted NGS analysis was performed for the sequences 
surrounding the CpG site of interest for each miRNA. 
Blood-derived gDNA was analysed in 23 DKD cases 
and 23 DCs. Participant characteristics are included 
within Additional file  1: Table  S2. The gDNA samples 
were matched to the GoKinD cell-line DNA samples 
from which they were originally transformed, therefore 
analysis was conducted for 92 samples for each genomic 
region.

Target sequences for the five miRNAs were amplified 
using custom designed primers via a polymerase chain 
reaction (PCR). DNA fragments were pooled by sizes of 
approximately 800 base pairs (bp), 400  bp and 200  bp. 
Optimal primers were designed using Primer3Plus, Vec-
tor NTI Advance® (Invitrogen™, USA) and EpiDesigner 
software. Primers were selected depending on their abil-
ity to sufficiently cover the CpG site of interest and have 
compatible annealing temperature to enable multiplex 
reactions. Primer sequences are provided in Additional 
file 1: Table S3 with optimised PCR conditions.

The library preparation was conducted using two 
Thermo Fisher Scientific protocols. The Ion Xpress™ 
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Plus gDNA Fragment Library Preparation protocol 
(MAN0009847, revision B.0) was employed where the 
initial fragments were approximately 800  bp as they 
required fragmentation using the E-Gel™ SizeSelect™ 2% 
Agarose Gel to generate 200 bp libraries. For fragments 
originally of 200  bp and 400  bp, the Prepare Amplicon 
Libraries without Fragmentation Using the Ion Plus Frag-
ment Library Kit protocol (MAN0006846, revision A.0) 
was followed.

Following library preparation, the DNA samples were 
diluted to 26  pM using DNA-free water. The 400  bp 
libraries were enriched using Thermo Fisher Scientific’s 
Ion OneTouch™ 2 (OT2) and Enrichment System (ES) 
(Ion Personal Genome Machine® (PGM™) Template OT2 
400 Kit manual MAN0007219, revision 3.0). The 200 bp 
libraries were enriched and prepared using the Ion Chef™ 
(Ion PGM™ IC 200 Kit manual, MAN0007661, revision 
A.0).

Both the Ion 316™ Chip v2 and the Ion 318™ Chip v2 
were used to sequence the DNA samples using the Ion 
PGM™ System (Thermo Fisher Scientific), before the raw 
data was analysed using Torrent Suite™ Software v4.0.4 
and Partek® Genomics Suite® 6.6 software (Partek® Inc., 
USA). The sequencing reads were aligned to the hg19 
reference sequence. SNPs were aligned to dbSNP ver-
sion 141 and annotated using RefSeq version 2014-07-30. 
The chromosome viewer was used to visualise the overall 
sequencing coverage for the region of interest surround-
ing the top-ranked CpG site for each miRNA.

Sanger sequencing: fine mapping and methylation analysis
Forty-six gDNA samples, 23 DKD cases and 23 DCs, 
were bi-directionally Sanger sequenced using the ABI 
3730 Genetic Analyser (Thermo Fisher Scientific). This 
was completed to enable direct comparisons to be drawn 
against the NGS variant calls.

Bisulphite treatment of the same samples was per-
formed using the EZ-96 DNA Methylation™ Lightning 
Kit prior to Sanger sequencing. The resulting data pro-
vided the opportunity to assess the methylation status of 
each CpG site within the fragment.

ContigExpress, a component of Vector NTI Advance® 
11.5.2 was used to analyse the Sanger sequencing data 
and determine accurate SNP calls. DNA sequences were 
aligned to the GRCh37 reference genome obtained from 
online resource, Ensembl.

An overview of the analysis workflow is illustrated in 
Fig. 1.

Results
Discovery 450K methylation analysis
Methylation status was quantitatively determined (DKD 
cases n = 150 and DCs n = 100). QC showed that > 99% 

concordance was observed between all included indi-
viduals; r2 > 0.98 for each of the sample pairs assessed. In 
total, 74 CpG sites were determined from the EWAS, five 
of which were identified with significantly altered β lev-
els from the original EWAS protocol [28]; miR-141, miR-
329-2, miR-34A, miR-429 and miR-940 (Additional file 1: 
Table S4). This manuscript is focused on validation and 
fine-mapping of these top-ranked miRNAs in individuals 
with and without DKD.

NGS: targeted DNA sequencing
Targeted NGS was performed using the Ion PGM™ for 
DNA extracted from both whole blood and cell-line 
DNA. Both the Ion 316™ Chip v2 and the Ion 318™ Chip 
v2 were used in this analysis which typically generated 1.6 
million to 3 million reads (Additional file 2: Figure S1).

Analysis was completed using Torrent Suite™ Software 
and Partek® Genomics Suite®. Four SNPs were identified 
which have not previously been associated with DKD, or 
identified as top-ranked results in GWAS (Fig.  2); two 
within miR-329-2 (rs141067872 and rs10132943) and 
two within miR-429 (rs7521584 and rs112695918). The 
frequency distributions for these SNPs are included in 
Additional file 1: Table S5.

Figure  2 also shows the comparative results of the 
blood-derived gDNA samples and their complementary 
cell-line transformed DNA samples, both analysed using 
the Ion PGM™ (23 DKD cases and 23 DCs). This com-
parison of matched samples; gDNA compared to cell-line 
DNA, showed 100% concordance for SNP calls.

Sanger sequencing: fine mapping and methylation analysis
To confirm variants identified by NGS, the same primer 
pairs were used to bi-directionally Sanger sequence 
matched gDNA samples (23 DKD case and 23 DCs). The 
variants identified by the NGS approach were confirmed 
by Sanger sequencing (Fig.  3). The genotype and minor 
allele frequencies (dbSNP, HapMap-CEU, low cover-
age panel) determined are detailed in Additional file  1: 
Table S5, though it is essential to note that not all frag-
ments for all samples were Sanger sequenced successfully.

The gDNA DKD and DC samples were also BST in 
order to assess the methylation status of each CpG site 
present within the fragment as reported by the 450K 
methylation array using ContigExpress software. In all, 
35 methylation sites were identified for these miRNAs 
following bi-directional sequencing (Additional file  1: 
Table S6).

Discussion
This study reports the novel association of five miR-
NAs with DKD, performing validation following the 
published EWAS and fine-mapping on these miRNAs. 
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Additionally, different sequencing approaches were 
evaluated to define the genetic and epigenetic architec-
ture of sequences surrounding miRNAs associated with 
DKD. Comparative analysis between Sanger sequenc-
ing and NGS technologies confirmed a 100% concord-
ant call rate for all SNPs identified by both techniques, 
for duplicate samples, providing reassurance that the 
original gDNA sequence for miRNAs was unaltered by 
the cell-line transformation process. Several additional 
studies have also reported this positive comparison 

between Sanger and NGS approaches [30–33]. Nota-
bly, this is the first report to return results using sem-
iconductor sequencing chemistry and Ion Torrent 
platforms for top-ranked miRNAs identified from 
an EWAS. Despite being the gold-standard method, 
Sanger sequencing is not faultless and has been shown 
to be inefficient in confirming NGS results for regions 
with high GC content, and repetitive sequences [31]. 
NGS methods are reported to be more sensitive and 
scalable than Sanger sequencing [30, 33, 34].

Infinium HumanMethyla�on 450K 
BeadChip array analysis 

150 DKD case samples and 100 T1D 
control samples 

Iden�fica�on of 5 miRNAs with differen�ally altered 
methyla�on status (p<x10­5) 

miR-141, miR­329-2, miR-34A, miR­429 and miR­940

Ion PGM™ NGS Sequencing Bi­direc�onal Sanger Sequencing

gDNA Sequencing 

23 DKD case samples and 
23 T1D control samples

Cell­line transformed 
DNA Sequencing 

23 DKD case samples and 
23 T1D control samples

gDNA Sequencing 

23 DKD case samples and 
23 T1D control samples

BST DNA Sequencing 

23 DKD case samples and 
23 T1D control samples

Torrent Suite™ So�ware 
v4.0.4 analysis

 Sequencing fragments 
aligned to hg19, crea�on of 

.bam files and summary 
sta�s�cs generated

Addi�onal analysis using 
Partek® Genomics Suite® 6.6 

SNP iden�fica�on

Con�gExpress analysis

SNP iden�fica�on

CpG site confirma�on

Fig. 1  Workflow of analysis methods undertaken in this study. bam binary alignment map, BST bisulphite-treated, CpG 
cytosine-phosphate-guanine, DKD diabetic kidney disease, gDNA genomic DNA, hg human genome, NGS next generation sequencing, SNP single 
nucleotide polymorphism, T1D type-1 diabetes mellitus
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Fig. 2  Comparison of matched genomic and cell-line transformed DNA for identified SNPs. Comparison of matched genomic and cell-line 
transformed DNA for rs141067872, rs10132942 (both miR-329-2), rs7521574 and rs112695918 (both miR-429) data generated by the Ion PGM™. The 
matching gDNA and cell-line transformed DNA show consistent results indicated by the base colour patterns in each example. Chr chromosome, 
hg human genome

Fig. 3  Comparison of SNPs located within miR-329-2 and miR-429 identified by targeted NGS and Sanger sequencing. The data generated by 
both platforms showed consistent results for SNP calls. Ion PGM™ data analysed using Partek Genomics Suite is shown on the left, with the 
complementary Sanger sequence results shown on the right, for matching genomic DNA samples. Chr chromosome, DC diabetic control, DKD 
diabetic kidney disease, hg human genome, Ref reference, Seq sequence

(See figure on next page.)
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Regarding DNA methylation, the BST DNA Sanger 
sequencing analysis mirrored the methylation sites 
identified through the Infinium Human Methylation 
450K analysis. It is advisable to use at least two meth-
ods to detect and confirm differential methylation 
status [35]. Of the five main methods of detecting dif-
ferential methylation, three were not employed in this 
study; (1) immunoprecipitation of methylated DNA, (2) 
methylated DNA capture by affinity purification and (3) 
reduced representation bisulphite sequencing [36]. The 
bisulphite-based methods, of which two were employed 
here, performed optimally in comparison to the others 
[36].

In conclusion, differential methylation in the five top-
ranked miRNAs is associated with DKD and we have 
provided new details on the genetic architecture sur-
rounding these loci. Targeted NGS compared favourably 
with Sanger sequencing. Sanger sequencing is costly and 
time-consuming when assessing many variants, or sam-
ples. Targeted NGS provides a robust alternative method, 
offering more cost-effective and often more sensitive 
approach.

Limitations
A potential limitation is that the sequencing data gener-
ated with the Ion PGM™ Template OT2 400 Kit was not 
of as high quality as the Ion PGM™ IC 200 Kit. Fragments 
of 400  bp in length had to be prepared and enriched 
using both the OT2 and ES, not the Ion Chef™ due to 
chemistry incompatibilities at the time this experiment 
was undertaken (2014–2015). Both miRNAs with 400 bp 
fragments, miR-34A and miR-940, could have prim-
ers re-designed to facilitate 200  bp fragments covering 
the region of interest to provide better coverage of these 
regions.

Additional files

Additional file 1: Table S1. Characteristics of the individuals present 
within the HumanMethylation 450K BeadChip array analysis. Table S2. 
Characteristics of the individuals included within the sequencing 
analysis. Table S3. PCR sequences and conditions for miRNA sequencing. 
Table S4. Details of the top-ranked miRNAs identified from 450K Illumina 
methylation analysis. Table S5. SNP results from the fine mapping (gDNA) 
Sanger sequencing analysis. Table S6. Genomic and bisulphite treated 
DNA sequences for selected miRNAs.

Additional file 2: Figure S1. A summary the NGS Ion PGM™ sequenc-
ing statistics. a) the sequencing chip loading density, b) the sequencing 
read lengths presented as a histogram, c) the alignment percentage of 
sequencing reads to hg19, d) additional sequencing statistics including 
chip loading, enrichment percentage, comparison of clonal and poly-
clonal reads, and the percentage of the final library which met the quality 
threshold for sequencing.
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