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and their functional effect: an update
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Abstract 

Objective:  To aid in the development of a comprehensive list of functional variants in the swine genome, single 
nucleotide polymorphisms (SNP) were identified from whole genome sequence of 240 pigs. Interim data from 72 
animals in this study was published in 2017. This communication extends our previous work not only by utilizing 
genomic sequence from additional animals, but also by the use of the newly released Sscrofa 11.1 reference genome.

Results:  A total of 26,850,263 high confidence SNP were identified, including 19,015,267 reported in our previously 
published results. Variation was detected in the coding sequence or untranslated regions (UTR) of 78% of the genes 
in the porcine genome: 1729 loss-of-function variants were predicted in 1162 genes, 12,686 genes contained 64,232 
nonsynonymous variants, 250,403 variants were present in UTR of 15,739 genes, and 15,284 genes contained 90,939 
synonymous variants. In total, approximately 316,000 SNP were classified as being of high to moderate impact (i.e. 
loss-of-function, nonsynonymous, or regulatory). These high to moderate impact SNP will be the focus of future 
genome-wide association studies.
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Introduction
One of the key aims of livestock genomics research is 
to identify genetic variation underlying economically 
important traits such as reproductive performance, feed 
efficiency, disease resistance/susceptibility, and product 
quality. Until recently, association studies and genomic 
predictions have been performed using commercial sin-
gle nucleotide polymorphism (SNP) arrays, which con-
tain markers evenly spaced across the genome. Accuracy 
of genomic predictions can be improved by using more 
informative variants, including variants located near or 
within genes, predicted to affect gene function, or known 
to be causal. Genetic variants detected from whole-
genome sequence have been used to successfully identify 
causal variants and to map complex traits in domestic 
cattle [1–4]. In particular, it was shown that loss-of-func-
tion (LOF) variants, those expected to disrupt the protein 
coded by a gene, in the homozygous state can compro-
mise fertility in cattle by causing embryonic lethality [1]. 
Hence, a comprehensive list of LOF variants, as well as 

variants that alter the amino acid structure of a protein 
and those that regulate protein production, detected 
from whole-genome sequencing would be of consider-
able interest in swine genomic studies, particularly those 
targeting fertility and production traits.

The porcine variation currently reported in National 
Center for Biotechnology Information (NCBI) genetic 
variation database (dbSNP) and the European Vari-
ation Archive (EVA) represents several diverse pig 
breeds and wild boars from different regions of the 
world. Therefore it is likely that many of the variants in 
these databases do not segregate in commercial swine 
germplasm, a consequence of domestication and selec-
tion for lean meat production. To provide information 
on variants predicted to affect gene function in com-
mercial swine germplasm, a study was conducted to 
identify single nucleotide polymorphisms (SNP) from 
whole-genome sequence of 240 members of an experi-
mental swine herd at the U.S. Meat Animal Research 
Center (USMARC). These animals included all 24 of 
the founding boars (12 Duroc and 12 Landrace), 48 of 
the founding Yorkshire-Landrace composite sows, 109 
composite animals from generations 4 through 9, 29 
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composite animals from generation 15, and 30 pure-
bred industry boars (15 Landrace and 15 Yorkshire) 
used as sires in generations 10 through 15. Interim 
results from the 72 founding animals have been previ-
ously published [5]. The objective of this report is to 
present the updated data following sequencing of an 
additional 168 animals and the release of the new and 
improved swine reference genome build, Sscrofa 11.1.

Main text
Materials and methods
The DNA samples sequenced for this study were 
extracted from semen collected by commercial artifi-
cial insemination services and from blood and tail tissue 
archived under standard operating procedures for the 
USMARC tissue repository. The research did not involve 
experimentation on animals requiring Institutional Ani-
mal Care and Use Committee approval.

Library preparation and sequencing
Blood, semen, or tail tissue samples were obtained from 
240 members of a USMARC composite population, 72 
founding animals (generation 0), 109 animals from gen-
erations 4 through 9, 29 animals from generation 15, 
and 30 industry sires. DNA extraction, library prepa-
ration, and sequencing for the 72 founding animals has 
been previously described in [5]. For the 36 animals in 
generations 4 and 5, genomic DNA was extracted from 
tail tissue using standard DNA extraction protocols, 
sheared to 300–500  bp using a Covaris S220 ultrasoni-
cator (Woburn, MA, USA), and libraries prepared using 
the TruSeq DNA sample prep kit, version 2 (Illumina, 
San Diego, CA, USA) were paired-end sequenced (100 bp 
read length) on an Illumina HiSeq  2500 (Illumina Inc., 
San Diego, CA, USA) at DNA LandMarks (St.-Jean-sur-
Richelieu, QC, Canada). Genomic DNA for the 30 AI 
sires, the 73 animals from generations 6 through 9, and 
the 29 animals from generation 15 was extracted using a 
Wizard SV96 genomic DNA purification kit according to 
the manufacturer’s protocol (Promega Corp., Madison, 
WI, USA). Genomic DNA was sheared to 350  bp (gen-
eration 15 animals) or 550 bp (AI sires and generation 6 
through 9 animals) using a Covaris S220 ultrasonicator 
(Woburn, MA, USA), and libraries prepared using the 
TruSeq DNA PCR-Free prep kit (Illumina, San Diego, 
CA, USA). Libraries were paired-end sequenced (150 bp 
read length) on an Illumina NextSeq 500 (Illumina, San 
Diego, CA, USA) at USMARC. Bases of the paired-end 
reads for all sequenced genomes were identified with the 
Illumina BaseCaller, and FASTQ files were produced for 
downstream analysis of the sequence data.

Sequence data processing
The Trimmomatic software (Version 0.35) [6] was used 
to trim Illumina adaptor sequences and low quality bases 
from the reads. The remaining reads were mapped to 
the Sscrofa 11.1 genome assembly (NCBI Accession 
AEMK00000000.2) using Burrows–Wheeler Alignment 
(BWA, Version 0.7.12) [7] with the default parameters. 
All output SAM files were converted to sorted BAM files 
using SortSam from Picard (Version 1.1; http://broad​insti​
tute.githu​b.io/picar​d/), and duplicates in the BAM files 
were marked by applying MarkDuplicates from Picard. 
Genomic coverage for each of the BAM files was com-
puted using Samtools (Version 1.3) [8].

Variant calling and filtering
Best practices established for the Genome Analysis 
Toolkit (GATK, Version 3.7) [9] were used to identify 
SNP. Briefly, RealignerTargetCreator and IndelRealigner 
from GATK were applied for local realignment of indels. 
Base quality recalibration was then performed using 
BaseRecalibrator from GATK, where the recalibration 
report was formed using the default setting for covariates 
and the NCBI dbSNP database (Build 150) as the data-
base for known sites.

Multi-sample variant calling and genotyping was per-
formed with the GATK UnifiedGenotyper, taking input 
from each of the 240 BAM files.

The UnifiedGenotyper output provides several met-
rics that assess the quality of detected variation, includ-
ing quality (QUAL), quality by depth (QD), RMS 
mapping quality (MQ), Fisher strand (FS), haplotype 
score (HaplotypeScore), mapping quality rank sum test 
(MQRankSum), and read position rank sum test (Read-
PosRankSum). The QUAL metric is a phred-scaled prob-
ability of the SNP being homozygous for the reference, 
where higher values indicate higher confidence. QD is 
computed by dividing the variant confidence (QUAL) 
by the unfiltered depth of all non-reference samples. FS 
is a phred-scaled P-value using Fisher’s Exact Test to 
identify strand bias. Higher FS values indicate stronger 
strand bias, i.e. likely false positives. The HaplotypeScore 
is a measure of how well the data in a 10-base window 
around the variant can be explained by at most 2 haplo-
types. MQRankSum is a Wilcoxon Rank Sum Test that 
tests the hypothesis that the reads carrying the variant 
allele have a consistently lower mapping quality than the 
reads with the reference allele, while ReadPosRankSum is 
a Mann–Whitney Rank Sum Test that tests the hypoth-
esis that instead of being randomly distributed over the 
read, the variant allele is consistently found more often at 
the beginning or the end of a sequencing read. In order to 
reduce the false discovery rate, variants were hard filtered 
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to meet the following criteria, suggested by GATK 
documentation: QUAL > 30.0, QD > 2.0, MQ > 40.0, 
FS < 60.0, HaplotypeScore < 13.0, MQRankSum > − 12.5, 
and ReadPosRankSum > − 8.0.

Classification of variants
Filtered variants were classified according to their 
expected effect on gene function using snpEff (Ver-
sion 4.3) [10] and NCBI (Release 106) annotation of the 
Sscrofa 11.1 build. Variants detected in coding sequence 
were classified into one of four functional categories: 
(1) loss-of-function SNP, which are high impact vari-
ants expected to disrupt the protein coded by the gene; 
(2) non-synonymous SNP, which are moderate impact 
variants that alter the amino acid sequence of the pro-
tein coded by the gene, (3) regulatory SNP, which occur 
in non-coding RNA and untranslated regions (UTR) of 
protein-coding genes; and (4) silent SNP, which are syn-
onymous SNP and other low impact variants that do not 
affect the amino acid sequence.

Function of genes containing variation
Functions of genes containing detected variants were 
determined using the PANTHER classification system 
(Version 13.0) [11]. Enrichment analysis of gene function 
was performed using PANTHER’s implementation of the 
binomial test of overrepresentation. Significance of gene 
ontology (GO) terms was assessed using the default Sus 

scrofa GO annotation as background for the enrichment 
analysis. Data were considered statistically significant at 
Bonferroni corrected P-value < 0.05.

Results and discussion
Genomic DNA from 240 pigs, from a composite popu-
lation at USMARC, was sequenced on the Illumina 
HiSeq and NextSeq platforms, generating approximately 
72 billion paired-end reads (Additional file 1: Table S1). 
Sequence reads covered each pig’s genome at a mean of 
13.62 fold (×) coverage. Individual coverage per animal 
ranged from 0.97× to 31.13×; 24 animals were covered 
at less than 3×, and 44 were covered at more than 20×.

A total of 26,850,263 high confidence SNP were identi-
fied. Our variants comprised 36.9% of the porcine SNP 
in the NCBI dbSNP database (Build 150). A total of 
5793,049 of our variants were novel, i.e. not present in 
dbSNP, and 45,411 of them overlapped with the 61,596 
SNP assayed by the PorcineSNP60 v2 BeadChip (Illu-
mina Inc., San Diego, CA). While approximately 94% of 
the variants from our previous report were also identi-
fied in this study, only 85% of variants from our previous 
study were identified as high confidence variants (pass-
ing quality filtering). One factor contributing to this dis-
crepancy was the use of the improved reference genome, 
where many of the gaps and misassemblies present in the 
Sscrofa 10.2 genome build were resolved. Furthermore, 
the addition of high coverage sequence for 168 animals 

Fig. 1  Overview of the 26,850,263 SNP identified. Here, variant annotations have been collapsed so that each variant has only a single annotation. 
The category “Other” includes variants downstream of genes (up to 5 Kb), variants located in splice sites, and variants present in a gene but not in 
any of its transcripts
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Table 1  Significantly over- and  underrepresented gene ontology (GO) terms in  protein-coding genes with  loss-of-
function variants

a  Bonferroni corrected P-value

Ontology term Gene set (n genes) LOF genes 
expected

Over (+) 
or under (−)

P-valuea

Annotated 
genes (22,191)

LOF genes 
(592)

Biological process

 Meiotic cell cycle (GO: 0051321) 103 13 2.87 + 4.38E−02

 Cellular process (GO:0009987) 8666 319 241.73 + 3.26E−06

 Localization (GO: 0051179) 2853 123 79.58 + 5.12E−03

Molecular function

 Phospholipid-translocating ATPase activity (GO:0004012) 15 5 0.42 + 2.48E−02

 Intracellular ligand-gated ion channel activity (GO:0005217) 17 5 0.47 + 3.20E−02

 ATPase activity, coupled (GO:0042623) 159 16 4.44 + 4.31E−03

 ATPase activity (GO:0016887) 205 17 5.72 + 2.16E−02

 Calcium ion binding (GO:0005509) 483 29 13.47 + 3.35E−02

 Pyrophosphatase activity (GO:0016462) 512 30 14.28 + 3.29E−02

 ATP binding (GO:0005524) 1080 63 30.13 + 5.98E−05

 Hydrolase activity, acting on acid anhydrides, in phosphorus-
containing anhydrides (GO:0016818)

515 30 14.37 + 3.27E−02

 Hydrolase activity, acting on acid anhydrides (GO:0016817) 516 30 14.39 + 3.13E−02

 Adenyl nucleotide binding (GO:0030554) 1121 64 31.27 + 8.65E−05

 Drug binding (GO:0008144) 1219 69 34 + 5.16E−05

 Adenyl ribonucleotide binding (GO:0032559) 1115 63 31.1 + 9.88E−05

 Carbohydrate derivative binding (GO:0097367) 1569 84 43.77 + 2.92E−05

 Purine nucleotide binding (GO:0017076) 1391 74 38.8 + 1.09E−04

 Purine ribonucleoside triphosphate binding (GO:0035639) 1344 71 37.49 + 1.89E−04

 Purine ribonucleotide binding (GO:0032555) 1385 73 38.63 + 1.24E−04

 Ribonucleotide binding (GO:0032553) 1398 73 39 + 1.82E−04

 Nucleotide binding (GO:0000166) 1565 76 43.65 + 1.26E−03

 Nucleoside phosphate binding (GO:1901265) 1565 76 43.65 + 1.19E−03

 Small molecule binding (GO:0036094) 1801 87 50.24 + 2.89E−04

 Anion binding (GO:0043168) 1927 93 53.75 + 1.33E−04

 Hydrolase activity (GO:0016787) 1605 76 44.77 + 2.04E−03

 Metal ion binding (GO:0046872) 2142 90 59.75 + 2.43E−02

 Ion binding (GO:0043167) 3701 155 103.24 + 9.19E−05

 Cation binding (GO:0043169) 2186 91 60.98 + 2.57E−02

 Catalytic activity (GO:0003824) 3731 148 104.07 + 2.03E−03

 Organic cyclic compound binding (GO:0097159) 3718 140 103.71 + 3.02E−02

 Molecular_function (GO:0003674) 10,828 398 302.04 + 4.04E−11

 Binding (GO:0005488) 7828 287 218.36 + 2.47E−05

Cellular component

 Integral component of membrane (GO: 0016021) 4022 151 112.19 + 3.21E−02

 Intrinsic component of membrane (GO: 0031224) 4068 152 113.47 + 3.60E−02

 Membrane (GO: 0016020) 5874 210 163.85 + 1.95E−02

 Cell part (GO: 0044464) 9798 330 273.31 + 3.10E−03

 Cell (GO: 0005623) 9847 332 274.67 + 3.43E−03



Page 5 of 6Keel et al. BMC Res Notes          (2018) 11:860 

improved the allele frequency calculations used during 
multi-sample variant calling by GATK’s UnifiedGeno-
typer software, thereby producing quality scores that are 
much more refined than those from our previous study.

The number of SNP detected in our pigs was similar to 
previous reports [12, 13]. The variants reported in dbSNP 
represent several diverse pig breeds and wild boars from 
different regions of the world. Therefore the detection of 
less than half of dbSNP’s variants in our animals is likely 
because those variants do not segregate in our popula-
tion, which represents commercial swine germplasm, as 
a consequence of domestication and selection for lean 
meat production.

Variation was detected in 23,272 of the 29,847 anno-
tated porcine genes (Additional file  2: Table  S2). Most 
variation was detected in intergenic and intronic regions 
(Fig. 1). Analysis of expected effect on gene function pre-
dicted that 1162 protein-coding genes may be affected 
by 1729 loss-of-function or other high impact variants, 
12,686 genes contained 64,232 moderate impact vari-
ants (nonsynonymous and other SNP altering the coded 
amino acid sequence), and 15,284 genes contained 90,939 
low impact variants (SNP not expected to alter the amino 
acid sequence). Additionally, 250,403 variants that may 
be regulatory were identified, located in untranslated 
regions (UTR) of 15,739 genes.

Genes involved in hydrolase activity, ion binding, and 
nucleotide binding were among those over-represented 
in the set of genes containing high impact variants 
(Table 1). Large numbers of genes in the nonsynonymous, 
synonymous, and regulatory classes resulted in large 
numbers of significantly over-represented GO terms. The 
most significant molecular function GO terms that were 
over-represented in genes with nonsynonymous variants 
were related to protein and ion binding (Additional file 3: 
Table S3). Similarly, GO terms related to protein binding, 
ion binding, and nucleic acid binding were among the top 
over-represented terms in the set of genes with synony-
mous and regulatory variants (Additional file  4: Tables 
S4, Additional file 5: Table S5).

Conclusion
Utilizing functional SNP could significantly boost the 
reliability of genomic predictions. Loss-of-function vari-
ants and others that disrupt or alter proteins coded by a 
gene, as well as those that regulate protein production, 
likely have a greater effect on phenotype than other types 
of variation. In this work, we identified 26,850,263 SNP, 
of which 316,364 were predicted to be of high to mod-
erate impact. The present results provide an updated 
resource for functional variation in commercial swine 
germplasm.

Limitations
This work is only the first step in identifying functional 
genetic markers that influence economically relevant 
traits in the US swine industry. Additional work, includ-
ing imputation of sequence variants throughout our 
population and developing assays to directly genotype 
functional variants, is needed to discover the extent to 
which these variants affect specific traits of interest. Con-
tinued examination of the variants identified in this work 
is expected to lead to the development of genotyping 
panels that will allow swine producers and breeders to 
be able to make more rapid genetic progress by including 
them into their selection decisions.

Additional files

Additional file 1: Table S1. Animals used in this study and summary of 
sequencing.

Additional file 2: Table S2. Genes containing loss-of function (LOF), non‑
synonymous (NONSYN), synonymous (SYN), regulatory (UTR), and other 
variants and the positions of variants.

Additional file 3: Table S3. Significantly enriched gene ontology (GO) 
terms in the set of genes containing nonsynonymous variants.

Additional file 4: Table S4. Significantly enriched gene ontology (GO) 
terms in the set of genes containing synonymous variants.

Additional file 5: Table S5. Significantly enriched gene ontology (GO) 
terms in the set of genes containing regulatory variants.
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