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of the Pseudomonas syringae pv. actinidiae 
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Abstract 

Objective:  Bacterial canker is a destructive disease of kiwifruit caused by the Gram-negative bacterium Pseudomonas 
syringae pv. actinidiae (Psa). To understand the disease-causing mechanism of Psa, a kiwifruit yeast two-hybrid cDNA 
library was constructed to identify putative host targets of the Psa Type Three Secreted Effector AvrPto5.

Results:  In this study, we used the Mate & Plate™ yeast two-hybrid library method for constructing a kiwifruit cDNA 
library from messenger RNA of young leaves. The constructed library consisted of 2.15 × 106 independent clones 
with an average insert size of 1.52 kb. The screening of the kiwifruit yeast two-hybrid cDNA library with Psa AvrPto5 
revealed the interaction of a V-type proton ATPase subunit-H, a proline rich-protein and heavy metal-associated iso-
prenylated plant protein 26. Among these, heavy metal-associated isoprenylated plant protein 26 showed a positive 
interaction with Psa AvrPto5 as both prey and bait.
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Introduction
Kiwifruit (Actinidia spp.) is one of the most valuable hor-
ticulture crops of the world, generating 2.7 billion USD 
in 2017 [1]. In recent years, kiwifruit cultivation faced a 
production constraint when Pseudomonas syringae pv. 
actinidiae (Psa), a phytopathogenic Gram-negative bac-
terium responsible for the bacterial canker disease in 
kiwifruit, caused severe losses worldwide [2]. Five Psa 
biovars (1, 2, 3, 5 and 6), have been defined based on their 
place of origin, variation in the accessory genome and the 
symptoms caused [3–5]. Strains from these five biovars 
can cause shoot die-back and cankers in trunks; a severe 
symptom that can lead to the death of the kiwifruit vine. 
Gram-negative plant and animal bacterial pathogens use 
a Type Three Secretion System to deliver effectors into 
the host [6, 7]. Type Three Secreted Effectors (T3SEs) are 

necessary for pathogen virulence in susceptible plants 
but, conversely, may induce an immunity-associated 
hypersensitive reaction in plants harbouring a resist-
ance gene [8]. Several bacterial T3SE proteins can inhibit 
plant defences [9]; often, the mechanism behind this 
inhibition is unclear. The identification and characteriza-
tion of the host target (s) of the effector may reveal these 
mechanisms.

The comparison of the accessory genomes of biovar 1, 
2, 3, 5 and 6 has identified effector genes common to all 
biovars. From this subset of effectors, Psa avrPto5 (Gene 
ID IYO_020425) was selected for host target identifica-
tion in this study. Its homologue from the tomato bac-
terial speck pathogen Pseudomonas syringae pv. tomato 
DC3000 (PtoDC3000) avrPto1, has been investigated 
extensively in tomato and Arabidopsis [10]. A sequen-
tial knock-down study of 28 T3SEs in PtoDC3000 and their 
subsequent re-introduction into the pathogen dem-
onstrated an increase in virulence on N. benthamiana 
leaves when avrPto1 or avrPtoB was re-introduced [11]. 
From this, it was postulated that host target identification 
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with avrPto5 could reveal critical components of the Psa 
virulence mechanism in kiwifruit. To identify host tar-
gets, a Y2H system was used, owing to its tractability, 
the ability to observe an interaction in vivo [12], and its 
successful use with identification of host targets for other 
plant pathogen effectors [13–15]. In this study, an in vivo 
kiwifruit cDNA library was generated, assessed for its 
essential criteria, and screened using Psa AvrPto5 as bait.

Main text
Methods
Total RNA isolation and integrity assessment
One-month-old ‘Hort16A’ tissue-cultured plantlets were 
used for total RNA extraction [16]. Total RNA integrity 
analysis used the Agilent Bioanalyzer 2100 (Agilent Tech-
nologies, USA) as per the manufacturer’s protocol. Total 
RNA samples with a RNA integrity number (RIN) over 
7 were utilized for mRNA isolation using a NucleoTrap® 
mRNA kit (MACHEREY-NAGEL, Germany).

Y2H cDNA library construction
Purified mRNA was used for double strand (ds) cDNA 
synthesis as per the manufacturer’s protocol (Clontech, 
USA). From ds cDNA synthesis, a 7 µL aliquot was used 
for gel electrophoresis (0.8% agarose) to verify ds cDNA 
amplification. CHROMA SPIN TE-400 columns (Clon-
tech, USA) were used for ds cDNA purification. Purified 
ds cDNA and pGADT7-Rec (Clontech, USA) were co-
transformed into prey yeast cells (Y187; Clontech, USA) 
using the YeastMaker™ yeast transformation system 2 
(Clontech, Cat. No. 630439). Four days after plating, 
transformation efficiency and the number of independent 
clones were calculated as per the manufacturer’s protocol 
(Clontech, USA). The library cell density was also deter-
mined by haemocytometer counts, and 12 prey clones 
were randomly selected and analysed for the presence 
of prey plasmids by plasmid-specific HindIII restriction 
enzyme digestion and agarose gel electrophoresis.

Testing bait auto‑activation and toxicity
A PCR-based amplification of Psa avrPto5 with Psa 
genomic DNA and gene-specific primers (see Additional 
file  1: Table  S1) and was ligated into the pCR™8/GW/
TOPO® entry vector based on the manufacturer’s pro-
tocol (Invitrogen, USA). Psa avrPto5 entry plasmid was 
used in a Gateway® LR reaction (Invitrogen, USA) with 
the bait vector (pGBG2) [17] to develop a bait plasmid 
containing the avrPto5 insert. Psa AvrPto5 carrying bait 
yeast cells (Gold Y2H; Clontech, USA) and the prey vec-
tor (pGADT7-Rec) harbouring prey yeast cells (Y187) 
were generated by the YeastMaker™ yeast transforma-
tion system 2. The auto-activation and toxicity of the bait 

were tested based on the manufacturer’s protocol (Invit-
rogen, USA).

Y2H screening and identification of positive interactors
A concentrated bait yeast culture (Psa avrPto5) (4  mL) 
and prey yeast cDNA library (1  mL) were mixed in a 
sterile 2 L conical flask containing 45 mL 2× YPDA liq-
uid medium and subsequent steps were performed as 
per the manufacturer’s protocol (Clontech, USA). Mated 
yeast cells were spread on SDA/-Leu-Trp-His medium 
and incubated at 30  °C for 5 days. Positively interacting 
clones appearing on SDA/-Leu-Trp-His medium were 
suspended in sterile 1× TE buffer at OD600 0.4 value and 
tested further on a higher stringency SDA/-Leu-Trp-
His-Ade medium. Prey plasmids from positively inter-
acting yeast clones were isolated, transformed into E. 
coli using a plasmid miniprep kit (Zymo Research, USA) 
and standard electroporation (Bio-Rad, USA) protocols, 
respectively. Prey plasmids re-isolated from E. coli were 
re-transformed into prey yeast cells and mating was 
repeated with the bait (Psa avrPto5) to confirm the inter-
actions. Diploid yeast cells possessing both plasmids and 
controls at OD600 0.4 value were plated on SDA/-Leu-Trp, 
SDA/-Leu-Trp-His and four plates of SDA/-Leu-Trp-His 
supplemented with 1 mM to 4 mM 3-AT (3-Amino tria-
zole), a competitive inhibitor of the histidine.

Y2H assay
Three kiwifruit proteins identified from the above screen, 
heavy metal-associated isoprenylated plant protein 26 
(AcHIPP26), V-type proton ATPase subunit H (AcAT-
Pase) and proline rich-plant protein (AcPRP), were 
PCR amplified from kiwifruit cDNA with gene-specific 
primers (see Additional file  1: Table  S1) using the kiwi-
fruit database [18–20]. The resulting PCR amplification 
reaction was analysed by electrophoresis (1% agarose 
gel), and these genes were cloned into the prey vector 
(pADG2) [17] as per the manufacturer’s protocol. Subse-
quently, these were transformed into prey yeast cells and 
their interaction analysed with the bait (Psa avrPto5) as 
described above. Similarly, AcHIPP26 and Psa avrPto5 
were generated as bait and prey respectively, to verify 
their interaction.

Kiwifruit gene models
The kiwifruit gene models referred to are available from 
the list of FASTA gene models on the Plant and Food 
Research GitHub Repository (https​://githu​b.com/Plant​
andFo​odRes​earch​/Red5_WGS_Manua​l_Annot​ation​) 
using the file Acc_all_models_cds.fasta.gz which contains 
the cDNA sequences for the coding regions.

https://github.com/PlantandFoodResearch/Red5_WGS_Manual_Annotation
https://github.com/PlantandFoodResearch/Red5_WGS_Manual_Annotation
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Results and discussion
The integrity assessment of kiwifruit total RNA sam-
ples in the Bioanalyzer 2100 gave RIN values from 2.3 to 
8.1 (Fig.  1). In contrast to animal RNA, plant RNA has 
characteristic 25S and 18S rRNA units, and chloroplast 
RNA. In this experiment, an older version of the Bioana-
lyzer was used which examines RNA integrity from ani-
mal tissues [21], the characteristic features of plant RNA 
might interfere with RIN value calculation, making RIN 
measurement inaccurate. This means rRNA peaks in the 
electropherogram should be visually examined [22]. The 
visual assessment of the electropherogram (see Addi-
tional file 1: Figure S1) revealed no sign of the reduction 
in signal magnitudes in RNA samples, indicating kiwi-
fruit total RNA was intact. In this experiment, kiwifruit 
mRNA was reverse transcribed by using the SMART™ 
cDNA synthesis method (Clontech, USA). While veri-
fying ds cDNA in gel electrophoresis, a cDNA smear 
appeared between 0.4 and 3  kb, with greatest intensity 
between 0.4 and 2  kb (see Additional file  1: Figure S2). 
This suggests kiwifruit ds cDNA with a broad range of 
sizes was present with suitable parameters for library 
generation.

The kiwifruit cDNA library was constructed by co-
transforming ds cDNA and pGADT7-Rec vector into 
prey yeast cells. The transformation efficiency of the 
library was 7.1 × 105 CFU/µg prey vector and the 

total number of independent clones was calculated as 
2.15 × 106 CFU/library. These findings are comparable 
with a study where a cDNA library generation from ver-
nalized winter wheat in yeast using the SMART™ method 
showed a transformation efficiency of 5.25 × 105 CFU/µg 
prey vector and a total number of independent clones of 
2.52 × 106 CFU/library [23]. This suggested optimal con-
dition for the kiwifruit library construction. The library 
titre assessment by haemocytometer revealed the pres-
ence of > 1.8 × 107 CFU/mL. A titre of above 1x107 CFU/
mL is recommended for a Y2H library (Clontech, USA). 
The assessment of the cDNA insert size in prey plasmids 
by restriction digestion demonstrated the presence of 
inserts in all prey plasmids (not shown). The shortest and 
longest cDNA insert sizes were 0.65 kb and 2.8 kb respec-
tively, and the average cDNA insert size of the library was 
1.52 kb.

A candidate Y2H assay had been performed using 
Pto AvrPto host targets (AtCERK, AtLysm, AtTIFY6B, 
AtTCP) [15]. Their kiwifruit orthologs were tested with 
Psa AvrPto5 in Y2H however none interacted [24]. 
Therefore, we chose to screen the kiwifruit cDNA library 
with Psa AvrPto5. Before initiating Y2H screening, the 
Psa avrPto5 clone was investigated for toxicity and auto-
activation of the histidine marker in yeast. This showed 
no toxicity and auto-activation of the histidine marker 
on SDA/-Leu-Trp-His medium (see Additional file  2: 

Fig. 1  Capillary gel electrophoresis of kiwifruit total RNA samples. L-RNA ladder (nt nucleotide); 1–12 lanes are kiwifruit total RNA samples. *denotes 
total RNA samples were used for downstream processing. Arrows indicate 25S and 18S rRNA bands [32]
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Figures S3, S4). As a result, the medium SDA/-Leu-Trp-
His could be employed as a minimal medium to monitor 
Psa AvrPto5 interactions. After screening the library, 53 
positive interactions were identified. The prey plasmids 
were first isolated from all positive yeast colonies, re-
transformed into prey yeast cells and re-analyzed for the 
interaction characteristics. These assays revealed three 
prey clones having positive interactions with Psa AvrPto5 
(see Additional file  3: Figure S5). These were identified, 
by sequencing the plasmid, as AcHIPP26, AcATPase 
and AcPRP (Table  1). Most of the false positives were 
eliminated at the first instance using SDA-Leu-Trp-His 
medium. The sequencing of these false positives revealed 
they coded for actinidin, ACC oxidase, pyruvate decar-
boxylase and hypothetical proteins.

An reverse transcription PCR amplified full-length 
copy of AcATPase, AcPRP and AcHIPP26 genes was used 
again to verify the interaction with the bait and AcAT-
Pase, AcPRP proteins did not interact (see Additional 
file 3: Figure S6). The full-length copy of AcHIPP26 inter-
acted with Psa AvrPto5 as prey (Fig.  2) and bait (see 
Additional file 3: Figure S7). This indicates a true interac-
tion between the two proteins in yeast.

The AcHIPP26 is a putative metallo-chaperone protein 
based on alignments of its protein sequence with that of 
HIPP26 proteins from other plant species; it has a heavy 
metal-associated domain (HMA) and a C-terminus iso-
prenylation motif (CaaX) [25]. Several strands of evidence 
indicate that heavy metal-associated proteins participate 

in significant ways in plant-pathogen interactions [26, 
27]. For example, the virulence of Xoo (Xanthomonas 
oryzae pv. oryzae) effector PthXo1 involves eliminating 
copper ions in rice by manipulating the Xa21-induced 
COPT1 and COPT5 metallo-chaperones to encourage 
pathogen proliferation [28]. The small HMA (sHMA) 
proteins are the virulence target of the M. oryzae effec-
tor AVR-Pik in rice [29] and the HMA domain also has 
a role as a host target mimic in the Pikp-1 rice resistance 
protein to trigger pathogen defence [30]. These examples 
suggest that the metallo-chaperones may have an impor-
tant role in plant defence or other roles that the pathogen 
needs to manipulate and hence be a target for effectors. 
Our finding of AcHIPP26 as a possible host target of Psa 
AvrPto5 adds extra weight to this hypothesis.

Limitations
In this experiment, we identified more than fifty positive 
interactions with the bait. From a biological perspec-
tive, such a large number of interactions may not reflect 
the likely interaction in planta. Subsequent analyses of 
many of these interactions revealed them as likely false 
positives. We observed that partial length proteins of 
AcATPase and AcPRP interacted strongly, however, the 
full length of these proteins did not interact with Psa 
AvrPto5. This discrepancy can be explained in a number 
of ways including false-positive interactions or an indica-
tion that domain interactions can be prevented by steric 
hindrance caused by the folding of other portions of the 

Table 1  Positively interacting prey clones of Psa AvrPto5 in Y2H screening

S. no The putative prey clones identified by sequencing Gene model 
number [20]

1 Heavy metal-associated isoprenylated plant protein 26 (AcHIPP26) Acc 16317.1

2 V-type proton ATPase subunit H (AcATPase) Acc 16945.1

3 Proline rich-plant protein (AcPRP) Acc 10774.1

Fig. 2  Y2H analysis of Psa AvrPto5 (bait) and AcHIPP26 (prey). Plate I—SDA/-Leu-Trp medium; Plate II—SDA/-Leu-Trp-His + 3-AT 1 mM medium; 1—
Positive interaction control (Murine p53 (bait) + SV40 large T-antigen (prey); Clontech, USA); 2—Negative interaction control (Lamin (bait) + SV40 
large T-antigen (prey); Clontech, USA); 3—Negative self-activation control (Empty bait and prey vectors); 4—Bait self-activation control (Psa AvrPto5 
(bait) + Empty prey vector); 5—Prey self-activation control (Empty bait vector + AcHIPP26 (prey)); 6—True positive interaction control [33] (Pgy AvrB 
(Gene bank accession M21965) (bait) + AtRIN4 (AT3G25070) (prey)); 7—Psa AvrPto5 (bait) + AcHIPP26 (prey)
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protein [31]. Sometimes such folding changes can be bio-
logically relevant and at other times may be artefacts. 
Therefore, it is essential to be aware of the Y2H system 
disadvantages so that the technique can be employed 
in an effective way to accomplish its experimental aims. 
While the AcHIPP26 protein, in particular, is a potential 
candidate target for Psa AvrPto5, the interactions identi-
fied in this analysis need to be verified by further research 
in planta to assess their biological relevance.

Additional files

Additional file 1: Figure S1. Electropherogram of kiwifruit total RNA sam-
ples. The visual assessment showed the presence of prominent 25S and 
18S rRNA peaks on RNA samples 2, 3, 5, 8, 9, 11 and 12.*** corresponds 
to three chloroplast RNA peaks [32]. Some pictures are not marked with 
*** because the chloroplast peaks are not prominent enough. Figure S2. 
Gel electrophoresis of kiwifruit ds cDNA synthesis. Lane L—Kb plus ladder 
(Invitrogen, Cat. No. 10787018); Lanes 1, 2—Kiwifruit ds cDNA; Lane 3—
Mouse liver ds cDNA. Table S1. Gene specific primers used in this study.

Additional file 2: Figure S3. The bait (Psa AvrPto5) toxicity assay. A—
Yeast cells expressing empty bait vector on SDA/-Trp medium; B—Yeast 
cells expressing bait (Psa AvrPto5) on SDA/-Trp medium. Figure S4. The 
bait (Psa AvrPto5) auto-activation assay. I—SDA/-Leu-Trp medium; II—
SDA/-Leu-Trp-His medium. 1—Positive interaction control (Murine p53 
(bait) + SV40 large T-antigen (prey); Clontech, USA); 2—Negative interac-
tion control (Lamin (bait) + SV40 large T-antigen (prey); Clontech, USA); 
3—Negative self-activation control (Empty bait and prey vectors); 4—True 
positive interaction control [33] (Pgy AvrB (bait) + AtRIN4 (prey)); 5—Psa 
AvrPto5 (bait) and Empty prey vector.

Additional file 3: Figure S5. Y2H analysis of Psa AvrPto5 and three 
prey clones. Plates I—SDA/-Leu-Trp medium; Plate II—SDA/-Leu-Trp-
His medium; 1—Positive interaction control (Murine p53 (bait) + SV40 
large T-antigen (prey); Clontech, USA); 2—Negative interaction control 
(Lamin (bait) + SV40 large T-antigen (prey); Clontech, USA); 3—Negative 
self-activation control (Empty bait and prey vectors); 4—Bait self-activa-
tion control (Psa AvrPto5 (bait) + empty prey vector); 5—True positive 
interaction control [33] (Pgy AvrB (bait) + AtRIN4 (prey)); 6—Prey self-
activation control (Empty bait vector + AcATPase (prey)); 7—Psa AvrPto5 
(bait) + AcATPase (prey); 8—Prey self-activation control (Empty bait 
vector + AcHIPP26 (prey)); 9—Psa AvrPto5 (bait) + AcHIPP26 (prey); 10—
Prey self-activation control (Empty bait vector + AcPRP (prey)); 11—Psa 
AvrPto5 (bait) + AcPRP (prey). Figure S6. Y2H analysis of Psa AvrPto5 (bait) 
and full length AcATPase, AcPRP proteins. Plate I—SDA/-Leu-Trp medium; 
Plate II—SDA/-Leu-Trp-His medium. 1—Positive interaction control 
(Murine p53 (bait) + SV40 large T-antigen (prey); Clontech, USA); 2—
Negative interaction control (Lamin (bait) + SV40 large T-antigen (prey); 
Clontech, USA); 3—Negative self-activation control (Empty bait and prey 
vectors); 4—Bait self-activation control (Psa AvrPto5 (bait) + Empty prey 
vector); 5—True positive interaction control [33] (Pgy AvrB (bait) + AtRIN4 
(prey)); 6—Prey self-activation control (Empty bait vector + AcATPase 
(prey)); 7—Psa AvrPto5 (bait) + AcATPase (prey); 8—Prey self-activation 
control (Empty bait vector + AcPRP (prey)); 9—Psa AvrPto5 (bait) + AcPRP 
(prey). Figure S7. Y2H analysis of AcHIPP26 (bait) and Psa AvrPto5 (prey). 
Plate I—SDA/-Leu-Trp medium; Plate II—SDA/-Leu-Trp-His + 3-AT 4 mM 
medium; 1—Positive interaction control (Murine p53 (bait) + SV40 large 
T-antigen (prey); Clontech, USA); 2—Negative interaction control (Lamin 
(bait) + SV40 large T-antigen (prey); Clontech, USA); 3—Negative self-
activation control (Empty bait and prey vectors); 4—True positive interac-
tion control [33] (Pgy AvrB (bait) + AtRIN4 (prey)); 5—Bait self-activation 
control (AcHIPP26 (bait) + empty prey vector); 6—Prey self-activation 
control (Empty bait vector + Psa AvrPto5 (prey)); 7—AcHIPP26 (bait) + Psa 
AvrPto5 (prey).
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