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Self-organizing scale-free patterns 
in a phase-modulated periodic connecting 
system
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Abstract 

Objective: The regularity of scale-free patterns in rank-size relations has been observed in word frequency, city size 
distribution, firm size distribution, and gene expression. Because of the common emergence of this regularity, under-
standing its mechanisms has been of great interest. For obtaining the scale-free pattern regularity, various models 
based on the rich-get-richer mechanism have been proposed; however, the overarching procedure of searching 
for the “rich” is in disagreement with the locally interacting behaviors seen in the aforementioned natural and social 
phenomena.

Results: We implemented a computational model of a resource distribution system inspired by observations of word 
connectivity, which is created by local constraints with periodic and phase modulatory features. Here, we empirically 
demonstrated that a phase-modulated periodic connecting system can reach a dynamic equilibrium state as the 
most probable case, with the self-organizing scale-free patterns. The regularity could be a result of the configurational 
balance in spatiotemporal inequity during the resource distribution process with an adaptive constrained connectiv-
ity. Our results suggest that investigations of interferences of oscillating fluctuations in the system will elucidate the 
autoregulatory dynamic behavior.
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Introduction
The regularity of scale-free patterns  [1] has been 
observed in word frequency [2], city size distribution [3], 
firm size distribution [4], gene expression [5], and hyper-
links on the World Wide Web [6]. According to this regu-
larity, rank-size relations could be exhibited for which the 
frequencies of words or the populations of cities follow 
the same pattern in relation to their rank on a list. The 
emergence of global regularity is considered the outcome 
of collective behaviors in an open system that consists of 
a set of many locally interacting elements [7, 8]. In a sys-
tem that has a continuous external energy supply, regu-
larity can be observed when the system reaches a stable 
state, which is a balance between the energy supplied 

from outside the system and the energy dissipated inside 
the system  [9, 10]. The balance can be implemented by 
the effects of fluctuations amplified through chain reac-
tions [11] among the interacting elements in a competi-
tive manner [12]. Although the system can spontaneously 
reach and adaptively self-sustain the stable state  [13], 
understanding the self-organizing behaviors has been of 
great interest [14, 15].

For regularity, the network model based on the rich-
get-richer mechanism  [16] was developed in a study of 
the formation of the World Wide Web network  [17] by 
Barabási and Albert (called the BA model). In the BA 
model, network node distributions provide scale-free 
patterns with network growth settings, where a succes-
sively increasing node preferentially links to a node hav-
ing a larger link. Since then, various models based on 
the rich-get-richer mechanism have been proposed  [18, 
19]. However, the overarching procedure of searching 
for the “rich” (called the “hub” in network models) is in 
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disagreement with the behaviors of locally interacting 
elements observed in the aforementioned natural and 
social phenomena [20]. To understand the behaviors of a 
dynamic system, we implemented a computational model 
for the distribution of resources [21] such as words, peo-
ple, and money. Then, we explored whether the recursive 
process of a resource distribution system can reach a sta-
ble state with the regularity of scale-free patterns.

Main text
Results and discussion
Word connectivity in text
We first took words as elements and analyzed the text of 
the Online Mendelian Inheritance in Man (OMIM) data-
base  [22] as an example of a resource distribution sys-
tem. The OMIM text, which contains 268,006 words and 
a total word frequency of 15,358,228, was analyzed for 
connectivity [23] between the words and the subsequent 
words (see "Methods"). The distributions of words and 
their connection frequencies are shown in Additional 
file 1: Figure S1. As expected, the word frequency distri-
bution exhibits a clear linearity on a log-log plot (Addi-
tional file  1: Figure  S1a), and the scaling exponent (see 
"Methods") was confirmed to be about one. As the top 20 
words (Additional file 1: Table S1a) show, the number of 
connections is not associated with the word frequency. 
Interestingly, the connection frequency also exhibits a 
linear-like relation (Additional file  1: Figure  S1b), sug-
gesting that only a few of the combinations can have 
large connection frequencies. As observed for the top 20 
most frequent connections (Additional file 1: Table S1b), 
word connections are created by local constraints such as 
compounds, stock phrases, and grammatical rules. These 
indicate that words are connected by an adaptive regula-
tion with periodic and phase modulatory features.

Rank‑size relations of resource distribution systems
Considering that the connectivity can give rise to the 
appearance of the scale-free pattern regularity, we 
implemented two types of resource distribution systems 
employing the urn model [24]: a periodic connecting sys-
tem and a phase-modulated periodic connecting system. 
In the systems, balls were randomly set in urns arranged 
in a horizontal number line. In the periodic connecting 
system, an urn from which a ball is taken and an urn to 
which the ball is moved, were chosen by a one-dimen-
sional periodical mapping devised by a linear congru-
ential generator  [25]. In the phase-modulated periodic 
connecting system, the urn to which a ball is moved, was 
adaptively regulated to be an adjacent urn to the right 
or left of the urn from which the ball is taken, by suc-
cessively utilizing the one-dimensional periodical map-
ping (see "Methods" for the procedures of the systems). 

By using the urn model, a set of urns and the balls in the 
urns respectively represent the elements and the energy 
of the elements [26].

Figure 1 shows the rank-size relations for the case of a 
total of 3200 balls and 1600 urns at the 25-millionth iter-
ation. The periodic connecting system corresponds to a 
closed system of particle elements studied in the field of 
equilibrium statistical mechanics  [10, 26] when the urn 
choices by the one-dimensional periodical mapping are 
regarded as being pseudo-random. The appearance of the 
linearity in the log-linear plot (Fig.  1a) is in agreement 
with studies where a system has reached and sustained 
a thermodynamic equilibrium state as the most prob-
able case, having an exponential distribution (known as 
the Boltzmann distribution) for the energy distribution 
of oscillating particles through energy exchange among 
particles [26]. By introducing the phase-modulation, the 
near linearity in the log-log plot (Fig.  1d) is observed 
( �  (scaling exponent) = 1.15 and R2 = 0.957 ), indicat-
ing the emergence of the scale-free pattern regularity. 
The scaling exponent and adjusted R2 (see "Methods") 
of the phase-modulated periodic connecting system are 
stable after about the 5-millionth iteration at around one 
(Fig. 2a) and greater than 0.9 (Fig. 2b), indicating that a 
dynamic equilibrium state with the formation of scale-
free patterns has been self-sustained.  

Dynamic behavior of the phase‑modulated periodic 
connecting system
To grasp the state transitions of ball distributions for the 
phase-modulated periodic connecting system, we studied 
the dynamic behaviors of the numbers of balls in the urns 
arranged in numerical order. Additional file 1: Figure S2 
represents the numbers of balls as bar lengths for the 
case of a total of 500 balls and 250 urns. From the ini-
tial setting in which the numbers of balls in the urns are 
almost the same (Additional file  1: Figure  S2a), the ball 
movements create such a heterogeneity [27] that balls are 
admeasured into the modules  [28] of the arranged urns 
(Additional file 1: Figure S2b), and a few urns with large 
numbers of balls have co-appeared with the larger dispar-
ity (Additional file  1: Figure  S2c). See Additional file  2: 
Movie S1 for five million iterations.

Focusing on the movements of each ball, we further 
investigated the relation of each ball with the urns to 
which it has been moved. Figure 3 shows the distribution 
of the urns for each ball during 10,000 iterations from 
the 4.99- to 5-millionth iteration. In the figure, the plots 
in grayscale denote the frequencies of the urns to which 
each ball has been moved, from the top-left to the bot-
tom right with sorting of the rows (balls) and columns 
(urns) by correspondence analysis  [29] (see "Methods"). 
Whereas the plots of the periodic connecting system 
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(Fig. 3a) are scattered, and the relations of the balls with 
the urns are independent, the plots of the phase-mod-
ulated periodic connecting system (Fig.  3b) show a 
belt-like relationship, indicating that the balls have suc-
cessively circulated among their associated urns. This 
observation is reminiscent of the entrained synchroni-
zation of interacting phase-modulated oscillators  [30], 
taking the moving balls as oscillators. We infer that the 
resonance phenomenon [31] arising in the synchronized 
ball movement could be relevant to the emergence of 
scale-free pattern regularity. 

The systems we have studied are the so-called com-
plex systems whose behaviors are determined by the 
current states of the system, and the behaviors define 

the subsequent states in turn [32]. By employing the urn 
model, the transient process in a nonlinear dynamic sys-
tem was studied using the numbers of balls in the urns. 
Since the development of the BA model, modeling based 
on the rich-get-richer mechanism that yields the scale-
free pattern regularity has been established. Our results 
indicate a decentralized mechanism  [8] by interferences 
of oscillating fluctuations due to an adaptive constrained 
connectivity for yielding the self-sustained scale-free pat-
tern regularity. We believe that the dynamic behavior 
appearing in the phase-modulated periodic connecting 
system can provide a new perspective on the autoregula-
tion of complex systems; for instance, the autoregulatory 
popular mobility accompanied by city development.

Fig. 1 Rank-size relations of number of balls in urns for the case of a total of 3200 balls and 1600 urns (N = 3200, K = 1600) at the 25-millionth 
iteration of the a, b periodic and c, d phase-modulated periodic connecting systems. In order to comprehend the statistical properties, the 
rank-ordered frequencies for the systems are plotted in both log-linear coordinates (a, c) and log–log coordinates (b, d)
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Methods
Computational models of resource distribution systems
Two types of resource distribution systems, a periodic 
connecting system and a phase-modulated periodic 

connecting system, were implemented by employing the 
urn model [24]. The procedure for the periodic connect-
ing system is as follows:

Fig. 2 Changes in the a scaling exponent and b adjusted R2 of the phase-modulated connecting system (N = 3200, K = 1600) over 80 million 
iterations. After about the 5-millionth iteration, the system reaches a stable state through the ball movement process
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N balls are randomly placed in K urns m(i)(i 1, ,K)
loop

The urn m(ir) from which a ball is taken is calculated by a one-dimensional periodical mapping
while the number of balls in m(ir) 0 do

A randomly chosen ball in urn m(ir) is moved to an urn calculated by a one-dimensional periodical
mapping

end while
end loop

Fig. 3 Relations of balls with urns where each ball has been moved (N = 500, K = 250): the a periodic and b phase-modulated periodic connecting 
systems. The plots in grayscale denote the frequencies of the urns where each ball has been moved for 10,000 iterations from the 4.99-millionth to 
the 5-millionth iteration. The rows (balls) and columns (urns) are sorted in ascending order by the score calculated by correspondence analysis (see 
"Methods")
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The procedure for the phase-modulated periodic con-
necting system is as follows:

N balls are randomly placed in K urns m(i)(i = 1,· · · ,K)
loop

The urn m(im) from which a ball is taken is calculated by a one-dimensional periodical mapping
while the number of balls in m(im) > 0 do

A number pm (0≤pm<1) is produced using a one-dimensional periodical mapping
if pm < 0.5 then

A randomly chosen ball in urn m(im) is moved to an adjacent urn m(im+1)
else if pm ≥ 0.5 then

A randomly chosen ball in urn m(im) is moved to an adjacent urn m(im−1)
end if

end while
end loop

In these systems, a ball can be moved from one urn to 
another during an iteration. The difference between the 
two systems is the introduction of a simple adaptive reg-
ulation of urn choices in the phase-modulated periodic 
connecting system. When an adjacent urn has no corre-
sponding urn beyond the boundary, a ball is placed into 
an urn of another boundary in a circular manner.

A one-dimensional periodical mapping is implemented 
by adopting a linear congruential generator [25], which is 
often used to generate pseudo-random numbers. Num-
bers Pk of period M can be generated successively by

The modM denotes a remainder operation with M. For 
example, numbers Pk of period M = 16 are

by setting a = 5, c = 1, P0 = 1 . As shown above, every 
number from zero to M − 1 cyclically appears once in a 
period. In the experiments, a one-dimensional periodi-
cal mapping of period M = 32768 was used by setting 
a = 12869 , c = 6925 , P0 = 137.

The urn m(ir,m)(1 ≤ m(ir,m) ≤ K ) is calculated by the 
range transformation as follows:

The number pm(0 ≤ pm < 1 ) in the phase-modulated 
periodic connecting system is provided by dividing Pm

(0 ≤ Pm < M ) by M.

Analysis of word connectivity in text
An analysis was performed using the Online Mende-
lian Inheritance in Man (OMIM) database  [22], which 
is a well-known catalog of human genetic and generic 
disorders. The text for analysis was taken from a set of 
“*FIELD* TX” parts of the disease and gene descriptions 
with the entries numbered from #100050 to #613763 (as 

Pk = (a×Pk−1 + c)modM a, c,M : constant

6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5, 10, 3, 0, 1, 6, 15, 12, . . .

m(ir,m) = K × (Pk/M)+ 1

of March 2017). The number of words and the total word 
frequency are 268,006 and 15,358,228, respectively. Here, 

words are counted including isolated punctuation char-
acters such as commas, full stops, and parentheses. The 
connections between words were acquired by extracting 
their adjacent occurrences while ignoring punctuation. 
Then, the connection frequencies were established by 
counting the number of connections between the words 
and the subsequent words. The different connections 
resulted in 2,192,828 combinations, which correspond to 
0.0031% of all possible combinations (268,006 × 268,006 
combinations).

Analysis of scale‑free pattern regularity
For n values observed for some phenomenon, 
X = {x1, x2, · · · , xn}  (x1 ≥ x2 ≥ · · · ≥ xn > 0 ), the rela-
tion between X and rank N

gives the regularity of scale-free patterns, i.e., the so-
called power law (called Zipf ’s law for word frequency 
when � = 1)  [1]. Here, �  (� > 0 ) is a scaling exponent. 
Scale-free patterns are identified when the rank-size 
relation forms a straight line on a graph with logarith-
mic axes. The scaling exponent is estimated by least-
squares regression in log–log coordinates. The degree to 
which the targeted distribution follows the regularity is 
quantified by using the adjusted R2  (0 ≤ R2 ≤ 1 ), which 
indicates the degree of approximation [4]. A value of R2 
greater than 0.7 is considered a good approximation, and 
it approaches one for a well-approximated distribution.

Correspondence analysis
Correspondence analysis [29] is a method used to analyze 
the relations between variables called cases and items. 
This analysis yields an arrangement in which similar 
cases and items are placed close to each other. By intro-
ducing a data matrix whose rows and columns are vari-
ables (cases and items) with element values depending 

X = CN−� C : constant
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on the relations between the variables, the rows (items) 
and columns (cases) are arranged by sorting the scores 
calculated using the second-largest eigenvalue and the 
corresponding eigenvector. In the work presented in this 
paper, items and cases respectively represent balls and 
urns. The data matrix contains values of the frequencies 
of the urns to which balls have been moved.

Limitations
While providing evidence using a decentralized mecha-
nism due to an adaptive constrained connectivity for 
yielding the scale-free pattern regularity, the current 
study could not include investigations regarding the con-
sistency of the connectivity with actual dynamics of word 
occurrences and people movements. Additionally, we do 
not report on the statistical test [33] for forming power-
law distributions, although we have examined scale-free 
pattern formation using the adjusted R2 in least-squares 
fitting.

Additional files

Additional file 1: Table S1a. The 20 most frequent words in the OMIM 
text (terms are sorted in descending order according to their frequencies). 
Table S1b. The 20 most frequent connections in the OMIM text (con-
nections are sorted in descending order according to their frequencies). 
Figure S1. A rank-ordered frequency distribution in the OMIM text: (a) 
word frequency and (b) connection frequency. The least-squares fitting of 
the word frequency plot yields λ (scaling exponent) = 1.26 and R2 = 0.993 
to obey Zipf’s law. For the connection frequency plot, λ (scaling expo-
nent) = 0.909 and R2 = 0.988 are obtained. Figure S2. Examples of distrib-
uting a resource of the phase-modulated connecting system for the case 
of a total of 500 balls and 250 urns (N = 500, K = 250): (a) initial setting, (b) 
after 0.5 million iterations, and (c) after 4.8 million iterations. The vertical 
bars show the number of balls in the 250 urns. The ball movements create 
such a heterogeneity that balls are admeasured into the three modules 
which are around 20, 100, and 180 of the numbered urns (b), and then a 
few urns with larger numbers of balls have co-appeared (c).

Additional file 2: Movie S1. Visualization of distributing a resource of the 
phase-modulated connecting system for the case of a total of 500 balls 
and 250 urns (N = 500, K = 250). The bar lengths show the number of 
balls in the urns. The dynamic changes in the numbers of balls are shown 
up to five million iterations. A few urns having large numbers of balls co-
appeared through the ball movement process, whereas the numbers of 
balls in the other urns were small and fluctuated during iterations.
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