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Abstract

alternative to DE analysis by TCC for non-R users.

Objective: Differential expression (DE) is a fundamental step in the analysis of RNA-Seq count data. We had previ-
ously developed an R/Bioconductor package (called TCC) for this purpose. While this package has the unique feature
of an in-built robust normalization method, its use has so far been limited to R users only. There is thus, a need for an

Results: Here, we present a graphical user interface for TCC (called TCC-GUI). Non-R users only need a web browser
as the minimum requirement for its use (https://infinityloop.shinyapps.io/TCC-GUI/). TCC-GUI is implemented in R and
encapsulated in Shiny application. It contains all the major functionalities of TCC, including DE pipelines with robust
normalization and simulation data generation under various conditions. It also contains (i) tools for exploratory analy-
sis, including a useful score termed average silhouette that measures the degree of separation of compared groups,
(i) visualization tools such as volcano plot and heatmap with hierarchical clustering, and (jii) a reporting tool using

R Markdown. By virtue of the Shiny-based GUI framework, users can obtain results simply by mouse navigation. The
source code for TCC-GUI is available at https://github.com/swsoyee/TCC-GUI under MIT license.
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Introduction

RNA-Seq is a common technique used to obtain gene
expression data [1]. A major application of RNA-Seq data
is to identify differentially expressed genes (DEGs) under
different groups or conditions [2, 3]. Till date, many
methods have been developed for this purpose [4-9],
most of them implemented as R/Bioconductor packages
[10, 11]. We had previously developed an R/Bioconduc-
tor package named TCC [7], the main characteristic of
which is to implement a robust normalization procedure
originally proposed by Kadota et al. [12]. It can provide
accurate differential expression (DE) results especially
when up- and down-regulated DEGs in one of the groups
are extremely biased in their number. However, due to its
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limitations of usage by non-R users, there is a need of an
alternative for DE analysis by TCC.

Here, we present a graphical user interface (GUI) for
TCC, named TCC-GUI Using the Shiny framework [13],
it enables non-R users to manipulate the package and
adjust parameters easily in order to view the DE results.
The users only need a modern web browser as the mini-
mal requirement. Contrary to the original TCC and like
any other Shiny app, TCC-GUI provides plenty of visu-
alization tools: principal component analysis (PCA) for
exploratory analysis [14], Volcano plot [15] to view the
DE results, and so on. While making figures with high
customizability is not a trivial task even for experienced
R users, TCC-GUI facilitates such a task in real-time.

Main text

Implementation

TCC-GUI is built in R. The current implementation
depends on the following R packages: TCC, shiny,
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shinyBS, shinycssloaders, shinydashboard, shinyWidg-
ets, plotly, dplyr, DT, heatmaply, tidyr, utils, rmark-
down, data.table, RColorBrewer, knitr, cluster, and
MASS. While we primarily intend to use TCC-GUI via
its URL [16] without installation for non-R users, it will
launch locally from any R environment where prerequi-
site packages are installed. Although we have provided
the source code in the additional file (Additional file 1),
the latest version can also be downloaded through our
GitHub page [17]. The latest version can be launched as
follows:

shiny :: runGitHub (“TCC — GUI”, “swsoyee”, subdir
= “TCC — GUI”, launch.browser = TRUE)

System

TCC-GUI provides a total of five steps for DE analysis
(Fig. 1): data simulation (Step 0), exploratory analysis
(Step 1), TCC computation (Step 2), visualization (Step
3), and report (Step 4). The minimum DE procedure
only requires two steps (Steps 1 and 2). This is because
Step 1 includes (i) data import and (ii) group label
assignment as mandatory information for DE analysis.
Step 2 is the core step of TCC-GUI application, where
the DE analysis (i.e., statistical test), as implemented
in TCC, is performed. The input is taken from Step 1
and DE result can be obtained in Step 2. Therefore, the
remaining steps (Steps 0, 3, and 4) are not mandatory.
While we will detail each step below, a tutorial for indi-
vidual steps with appropriate screenshots is also pro-
vided in Additional file 2.

Data simulation (Step 0)

Similar to the original TCC, TCC-GUI can generate
simulation data with various conditions in Step 0. The
generated data can, of course, be used as input for DE
analysis within TCC-GUI, as well as other tools. The
“hypoData” provided as sample dataset in Step 1 is essen-
tially the same as that generated in Step 0 with almost
default settings (except for the proportion of assigned
DEGs in individual groups); the total number of genes
was 10,000 (N, = 10,000), 20% of the genes were DEGs
(Pppg=0.2), the number of groups was 2 (two-group
comparison; G1 vs. G2), the levels of DE (fold-change;
FC) for individual groups were fourfold (i.e., FC; =4 and
FCg,=4), the number of replicates (NR) were NR;; =3
and NR, =3, and the proportions of assigned DEGs (P)
were Pg;=0.9 and Pg,=0.1. Utilizing the advantage of
GUIL, users can recognize the number of DEGs assigned
in individual groups in real-time. Simulation data for
three-group comparison used in Tang et al. [18], for
example, can be generated in Step 0.
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* Generation of html report

Fig. 1 Analysis workflow and main functionalities in TCC-GUI.
TCC-GUI provides a total of five steps (Steps 0-4), amongst which
Steps 1 and 2 are mandatory

Exploratory analysis (Step 1)

At the first stage in Step 1, the user will be requested
to import count data and assign group information for
individual samples. The user can perform exploratory
analysis (quality control) based on the group labels.
The exploratory analysis includes count distribution,
multi-dimensional scaling (MDS), PCA, hierarchical
clustering, and so on. Figure 2 shows the dendrogram
of hierarchical sample clustering (SC) for “hypoData”.
There are two main clusters, each containing three
samples belonging to the same group; this is reasonable
because the data consists of two groups and contains
20% of DEGs (Pppg=0.2).

As a unique feature of TCC-GUI, it provides an aver-
age silhouette (AS) score for objectively estimating the
degree of group separation [19, 20]. Silhouette was
originally proposed for the interpretation and valida-
tion of cluster analysis [19]. Silhouettes provide a meas-
ure of how well a sample is classified when it is assigned
to a cluster, based on both their tightness and the
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Fig. 2 Exploratory analysis (Step 1). A dendrogram obtained from hierarchical sample clustering for a sample dataset “hypoData’is shown. The AS
score (0.246) can be seen on the left side of this figure

separation between them. Since the silhouette scores
are calculated for individual samples, the AS value can
be obtained by taking the mean across all samples.

We recently demonstrated that the AS value can be uti-
lized for estimating the degree of group separation [20]. It
ranges from — 1.0 to 1.0, and a higher AS value indicates
a higher degree of group separation (i.e., a higher per-
centage of DEGs). In case of hypoData with Ppr;=0.2,
TCC-GUI outputs AS=0.246 (see the left side of Fig. 2).
For data that contain no or few DEGs (i.e., Ppg=0.0
approximately), the AS value would be around zero [20].
Although the AS values can be calculated independent of
SC, they also provide a relevant measure for the degrees
of separation between the groups of interest (e.g., G1 vs.
G2) in SC results.

TCC Computation (Step 2)

This step includes data normalization and DEG identifi-
cation. It provides several analysis pipelines that can be
performed by changing options in the parameter setting
panel (see Step 2 in Additional file 2), They include the
iterative edgeR pipeline (as default), iterative DESeq 2
pipeline, and the original edgeR or DESeq 2 pipeline.

The DE results will appear in the “Result Table” panel
after the operation ends. While the main output is a
p-value that indicates the degree of DE between the
compared groups, other information, such as adjusted
p-values (i.e., g-values) and log ratio (M) values, are also

provided. The user can download the complete DE results
and TCC-normalized data as CSV files. The user can also
extract any subset of genes by the column of interest in
the table. This can be done by utilizing the boxes at the
bottom of the table. For example, the user will see a range
of log-ratios (=log,(G2/G1)) as [—6.63, 6.48] in the box
of the “M Value” column. The user can extract genes that
are twofold higher in G2 than in G1 by setting the range
appropriately, as in [1.0, 7.0].

TCC-GUI also provides R codes internally used to exe-
cute the TCC. Researchers can learn the functions that
are used internally, utilize this code as a template, and
obtain reproducible results.

Visualization (Step 3)
The MA plot is commonly used to visualize the DE result
of two-group comparisons, by transforming the data
onto log-ratio (M) scale as Y-axis and average expression
(A) scale as X-axis (Fig. 3). While 1320 genes, satisfying
10% false discovery rate (FDR), are colored in dark red by
default, both the cut-off value and color may be changed
by the user (see Step 3 in Additional file 2). Owing to
the interactive GUI framework, the user can obtain
more detailed information about a gene of interest (e.g.,
“gene_562") by placing the cursor in that location (see the
right side of Fig. 3).

Based on the definition of FDR, the 1320 genes
satisfying 10% FDR are theoretically composed of
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Fig. 3 Visualization (Step 3). As a representative visualization of DE result, the MA plot for two-group comparison, using “hypoData’, is shown. By
hovering data point (i.e, gene_562) of interest in the scatter plot, the expression pattern across samples can be seen on the right side

1320 x0.1=132 non-DEGs while the remaining
1320 x 0.9=1188 are true DEGs. Similarly, 1841 genes
satisfying 40% FDR are composed of 1841 x 0.4=736.4
non-DEGs and 1841x0.6=1104.6 true DEGs.
Although genes satisfying arbitrarily defined FDR cut-
offs are usually defined as DEGs, an increase in the
number of genes by loosening the FDR cut-off does not
necessarily indicate an increase in the number of true
DEGs [20]. In TCC-GUI, the number of genes satisfy-
ing various FDR thresholds can be interactively seen in
the “MA Plot Parameters” panel. In addition, informa-
tion of FDR cut-offs in increments of 0.05 is also pro-
vided in tabular form. This information, as well as the
AS value, would be helpful to estimate how the true
DEGs are included in the input data.

TCC-GUI provides Volcano plot as another way to
visualize the DE result of two-group data. In contrast to
MA plots that are constructed by plotting the M values
(Y-axis) vs. A values (X-axis), it plots M values on the
X-axis and statistical significances as —log;,(p-value)
on the Y-axis. Many users will be interested in genes
located in the upper left or upper right areas in the
plot. The user can, of course, change the colors and cut-
off values for both axes and see the number of genes
satisfying both the cut-offs. In case of hypoData with
default settings, the user will see 1374 genes down-reg-
ulated and 283 genes up-regulated in G2. This is quite

reasonable because the hypoData contains 1800 genes
down-regulated and 200 genes up-regulated in G2.

TCC-GUI also provides two other visualization tools
for somewhat general purposes: “Heatmap” and “Expres-
sion Level” “Heatmap” is a graphical representation of
data where the individual count values contained in a
matrix are represented as pseudo-colors. Hierarchi-
cal clustering is usually performed on heatmap, ena-
bling users to interpret the overall picture of expression
patterns with ease [21]. “Expression Level” can be used
to visualize expression patterns for genes of interest. It
would be useful to visualize, for example, expression pat-
terns of top-ranked DEGs obtained from two- or more-
group comparison.

Report (Step 4)

Although TCC-GUI has the option to export results after
every step, some users may prefer the output merged into
one single file. Like other sophisticated GUI-based tools,
such as PIVOT [22], TCC-GUI supports this functional-
ity in the final Step 4.

Representative analysis of a real count dataset

Here, we demonstrate a representative analysis of a real
count dataset [23], available at the ReCount website [24].
The dataset consisted of 36,536 genes x 21 liver samples.
Bottomly et al. [23] had studied the expression levels of
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two common inbred mouse strains used in neuroscience
research, i.e., 10 C57BL/6] strains and 11 DBA/2 J strains.
TCC-GUI displayed the results of two-group comparison:
(i) the AS value was 0.187 in Step 1, (ii) 22,604 low-count
genes were filtered (i.e., 36,536-22,604=13,932 genes
were used as input for TCC computation in Step 2), and
(iii) 1530 genes satisfying 10% FDR (i.e., Pppg=10.98%)
were detected as DEGs after TCC computation in Step 2.
These values were exactly the same as those described in
Zhao et al. [20]. A series of screenshots for this analysis is
given in Additional file 3.

Conclusion

TCC-GUI is a browser-based application for DE analy-
sis of RNA-Seq data. It enables non-R users to perform
the TCC package without installation. In addition to the
functionalities originally implemented in TCC, TCC-GUI
provides plenty of interactive visualization functions. The
powerful in-built functions would also be satisfactory for
experienced R users.

Limitations

While the development is complete from the end-user
perspective, the internally used R codes are still cluttered.
Moreover, the GUI in Step 4 is still in need of further
improvement. These refinements are desirable in near
future.

Additional files

Additional file 1. Source code for TCC-GUI. This file can be used to
launch TCC-GUI locally. The primary aim is to provide reproducible results
described in the manuscript.

Additional file 2. Tutorial for TCC-GUI. A step-by-step instruction to
perform individual steps for TCC-GUI is provided.

Additional file 3. Representative analysis of Bottomly’s dataset. A series of
screenshots while analyzing Bottomly’s real count dataset is provided.
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