
Witjes et al. BMC Res Notes          (2019) 12:194  
https://doi.org/10.1186/s13104-019-4222-3

RESEARCH NOTE

A genetical metabolomics approach 
for bioprospecting plant biosynthetic gene 
clusters
Lotte Witjes1, Rik Kooke2,4, Justin J. J. van der Hooft1, Ric C. H. de Vos3,4,5, Joost J. B. Keurentjes2,4, 
Marnix H. Medema1* and Harm Nijveen1* 

Abstract 

Objective:  Plants produce a plethora of specialized metabolites to defend themselves against pathogens and 
insects, to attract pollinators and to communicate with other organisms. Many of these are also applied in the clinic 
and in agriculture. Genes encoding the enzymes that drive the biosynthesis of these metabolites are sometimes 
physically grouped on the chromosome, in regions called biosynthetic gene clusters (BGCs). Several algorithms have 
been developed to identify plant BGCs, but a large percentage of predicted gene clusters upon further inspection 
do not show coexpression or do not encode a single functional biosynthetic pathway. Hence, further prioritization is 
needed.

Results:  Here, we introduce a strategy to systematically evaluate potential functions of predicted BGCs by superim-
posing their locations on metabolite quantitative trait loci (mQTLs). We show the feasibility of such an approach by 
integrating automated BGC prediction with mQTL datasets originating from a recombinant inbred line (RIL) popula-
tion of Oryza sativa and a genome-wide association study (GWAS) of Arabidopsis thaliana. In these data, we identified 
several links for which the enzyme content of the BGCs matches well with the chemical features observed in the 
metabolite structure, suggesting that this method can effectively guide bioprospecting of plant BGCs.
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Introduction
Plant specialized metabolism is the source of hundreds of 
thousands of natural products. These molecules play key 
roles in plant development and ecology as, e.g., defense 
agents and signals, and are broadly applied as medicines, 
dyes, flavorings and cosmetics. With the sequencing of 
hundreds of plant genomes, genome mining has become 
a new strategy to uncover the biosynthetic pathways 
towards known molecules of interest as well as to iden-
tify pathways towards novel compounds [1]. The recent 
discovery that significant numbers of plant metabolic 

pathways are encoded by physically clustered genes fur-
ther facilitates the genome mining process, as it enables 
rapid identification of candidate pathways from genome 
sequences alone [2]. Multiple tools have become avail-
able that automate the identification of these biosynthetic 
gene clusters (BGCs) in plant genomes [3–5]. Moreo-
ver, synthetic biology platforms have been developed for 
(transient) heterologous expression of such gene clusters 
in, e.g., tobacco and yeast, which allows relatively fast 
experimental exploration of plant’s biosynthetic potential 
[6–8].

However, heterologous expression of BGCs still 
entails a significant amount of work. Moreover, it 
appears that a substantial proportion of predicted 
gene clusters may not be bona fide BGCs; in such 
cases, multiple enzyme-coding genes—while located 
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adjacently on the chromosome and therefore trigger-
ing BGC prediction—do not in fact encode subsequent 
catalytic steps in one and the same pathway, and their 
transcription is not co-regulated. Indeed, Wisecaver 
et  al. reported limited overlap between BGCs and 
coexpression modules they obtained from large-scale 
transcriptomics data [9] (although they predicted 
these BGCs with methods not specifically designed 
for plants). Similarly, Kautsar et  al. found that strong 
coexpression within a BGC could be detected for 
around 25% of the gene clusters predicted in Arabi-
dopsis thaliana [4]. They identified two cases in which 
enzyme-coding genes within predicted BGCs clearly 
encoded unrelated steps in glucosinolate biosynthesis.

Hence, to capitalize on plant BGCs for the discovery 
of natural products and their pathways, new meth-
ods are required to prioritize predicted gene clusters. 
Besides transcriptomic analysis, another promising 
avenue for this is the combined use of metabolomics 
and genetic data to systematically connect gene clus-
ters with known and yet unknown metabolites based 
on natural variation [10, 11]. Indeed, several recent 
genetic studies in different plant species use untar-
geted metabolomics of plant populations to associate 
metabolite abundance quantitative trait loci (mQTLs) 
to enzyme-coding genes [12–16].

Here we argue that such metabolomics-based sys-
tems genetics approaches can be extended to sys-
tematically study plant BGCs and prioritize them for 
heterologous expression. To illustrate this, we use 
datasets from a recombinant inbred line (RIL) popula-
tion from Oryza sativa and a genome-wide association 
study (GWAS) from Arabidopsis to establish a proof of 
principle, showing that studying the overlap of mQTLs 
from such data with predicted BGCs generates inter-
esting hypotheses regarding the functional significance 
of these putative gene clusters.

Main text
To assess the potential of identifying mQTL-BGC over-
laps, we first used an mQTL dataset from an O. sativa 
RIL population (germinating seeds and leaves) pub-
lished by Gong et  al. [12]. These mQTLs were overlaid 
with BGCs predicted by plantiSMASH [4] (see Addi-
tional file  1). In this dataset, we identified a possible 
link between a predicted lignan BGC on chromosome 
1 (14,059,096–14,124,875  bp) and an mQTL for lehm-
bachol A (LOD-score: 3.3; Fig.  1). We could not trace 
any literature reporting on the biosynthesis of this mol-
ecule. Interestingly, it is a hydroxylated stilbenolignan 
compound, which matches well with the combination of 
genes found in the BGC: two dirigent enzymes (known 
to be responsible for directing the key C–C coupling step 
in lignan biosynthesis) and two dioxygenases that could 
hydroxylate the lignan scaffold. One of the dioxygenases 
(LOC_Os01g25010, expressed in leaves) had three non-
synonymous SNPs in the dioxygenase domain, which 
might be causal for the variation in the lehmbachol A 
production leading to the mQTL. The other dioxyge-
nase (LOC_Os01g24980) shows strong coexpression 
with one of the dirigent enzymes (LOC_Os01g25030) in 
root samples (see Additional file  2: Figure S1). Further 
downstream within the same mQTL region (and close 
to its peak, see Fig.  1), a chalcone/stilbene synthase-
encoding gene is also present (LOC_Os01g34560), which 
is expressed in shoots and leaves according to the Rice 
Expression Database [17]. There is a second mQTL for 
lehmbachol A as well, located on chromosome 10. In this 
region, another chalcone/stilbene synthase-coding gene 
(LOC_Os10g28060) can be found, which is clustered 
with nearby genes for a hydrolase (LOC_Os10g28020), 
an acetyltransferase (LOC_Os10g28040) and, somewhat 
further downstream, an epimerase (LOC_Os10g28200). 
It is not unthinkable that this second locus is (also) 
involved in the biosynthesis of lehmbachol. Both these 
two putative biosynthetic loci would represent interest-
ing candidates for further study.

LOC_Os01g24960 - LOC_Os01g25030

dioxygenasedirigent protein transposon-associated

10 Mb 20 Mb 30 Mb 40 Mb

Lehmbachol A

LOC_Os01g34560
chalcone/stilbene synthase

Fig. 1  Overlap between a predicted lignan BGC and an mQTL for lehmbachol A on rice chromosome 1. An unclustered chalcone/stilbene 
synthase-encoding gene (LOC_Os01g34560) is located further downstream within the same mQTL region
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Another interesting overlap in this rice dataset was 
found between a predicted polyketide BGC on chro-
mosome 11 (18,762,365–18,822,272  bp) and several 
flavonoid mQTLs, including an mQTL for putatively 
identified isogemichalcone B (LOD-score: 4.5). The flavo-
noid mQTLs match well with the presence of chalcone/
stilbene synthases in the predicted BGC.

We also used an mQTL dataset from a GWAS study 
with 349 A. thaliana accessions genotyped at 214,051 
markers (see Additional file  1). Unbiased metabolomics 
was performed with accurate mass LC–MS on full 
rosette leaf tissue grown under normal conditions, and 
raw MS spectral data were processed with MetAlign-
MSClust [18]. Linear mixed models in EMMA [19] and 
GAPIT [20] were applied to the genotype and metabolite 
profiling matrix, resulting in 1897 significant mQTLs (see 
Additional file 1). Again, the mQTLs were overlaid with 
BGCs predicted by plantiSMASH [4].

By examining the mQTL-BGC overlaps in the Arabi-
dopsis dataset (see Additional file 1), we identified several 
cases in which predicted BGCs overlapped with mQTLs 
corresponding to molecules which are in fact known 
to be synthesized by enzymes in specialized metabolic 
pathways encoded by non-clustered genes. For exam-
ple, a putative saccharide BGC located on chromosome 
2 (9,744,720–9,841,503  bp) overlapped with multiple 
mQTLs connected to flavonoid saccharides, including 
kaempferitrin, a kaempferol species that is O-rham-
nosylated on the third and seventh carbon atoms. The 
predicted BGC contained a UDP-glycosyltransferase 
(AT2G22930), which is similar in sequence to querce-
tin 3-O-glucosyltransferases. It is possible that this 
glycosyltransferase is able to 3-O-rhamnosylate kaemp-
ferol, since kaempferol and quercetin only differ in one 
hydroxy group on the B-ring. Alternatively, if the UDP-
glycosyltransferase only has substrate specificity for 
glucose and not rhamnose, the mQTL could be caused 
by an indirect effect, due to glucosylation competing 
with rhamnosylation of the same flavonoid substrate. 
Intriguingly, the predicted gene cluster also encodes 
multiple Scl acyltransferases, two of which (AT2G22990 
and AT2G23000) have previously been shown to act as 
anthocyanin sinapoyltransferases [21]. We observed a 
strong degree of coexpression (Pearson correlation coef-
ficients of > 0.79) for the glycosyltransferase AT2G22930 
with three Scl acyltransferases (AT2G22920, AT2G22960 
and AT2G23000) in a leaf time-course analysis of the 
response to barley powdery mildew fungus Bgh (NCBI 
GEO dataset GSE39463, Additional file  2: Figure S2). 
Altogether, this result suggests that multiple enzymes 
encoded in this predicted gene cluster are involved in 
different types of flavonoid modification. We also found 
mQTLs for kaempferitrin in three other loci, encoding 

Scl acyltransferases, a cytochrome P450 and a beta-glu-
cosidase that may potentially be involved in further mod-
ifying or breaking down the molecule. While this locus 
thus does not seem to encode a complete biosynthetic 
pathway by itself, it is still likely to encode multiple enzy-
matic steps involved in the same pathway, and may repre-
sent a case of ‘partial’ pathway clustering similar to cases 
reported for monoindole terpene alkaloid biosynthesis in 
Catharanthus roseus [22].

Of the four experimentally characterized BGCs in 
Arabidopsis, three—the thalianol, marneral and tirucal-
ladienol clusters—are specifically expressed in roots [23–
25]; hence, we did not expect to find mQTLs for these 
molecules in this GWAS dataset. The fourth, the arabid-
iol/baruol BGC, contains some genes that are expressed 
in both root and leaf (such as the baruol synthase PEN2, 
according to the Arabidopsis eFP browser [http://bar.
utoro​nto.ca/efp/cgi-bin/efpWe​b.cgi]). Indeed, six mQTLs 
mapped to different genes in this BGC, and two of these 
mQTLs mapped specifically to the PEN1 and PEN2 
oxidosqualene cyclase-encoding genes. The masses of 
the metabolites connected to this mQTL represent yet 
unknown compounds, and further research (e.g. MS/MS 
fragmentation analysis) is needed to confirm whether 
these masses belong to arabidiol/baruol derivatives or 
unrelated metabolites due to, e.g., downstream effects.

We also observed cases in which predicted BGCs may 
be regarded as putative false positives, in the sense that 
they do not encode enzyme-coding genes that are likely 
to function within the same pathway. E.g., a methoxyglu-
cobrassicin mQTL was associated with the cytochrome 
P450 gene CYP81F2 (AT5G57220, which has been impli-
cated in glucobrassicin biosynthesis [26]) within a pre-
dicted BGC (chromosome 5: 23,184,526–23,213,996 bp) 
containing no other enzyme-coding genes known to be 
involved in glucosinolate biosynthesis. For two other 
methoxyglucobrassicin mQTLs we could not derive a 
functional link with glucosinolate biosynthesis.

Finally and perhaps most interestingly, 23 predicted 
gene clusters showed only overlap with mQTLs of 
metabolites that have not been annotated yet, showing 
a clear potential for discovery of novel enzymes that can 
be tested through synthetic biology approaches to iden-
tify novel chemistry. Among such predicted gene clus-
ters, one may identify likely bona fide BGCs by finding 
cases in which multiple mQTLs overlap with the same 
predicted BGC (and in the case of GWAS, with multiple 
different genes within it) and are likely to represent bio-
synthetically connected molecules, based on e.g. having 
defined mass differences between them.

Of course, it is also possible to look for overlap of 
mQTLs with enzyme-coding genes in a non-BGC-centric 
fashion. By means of example, we scanned all Arabidopsis 
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mQTLs for enzyme families known to be involved in 
biosynthetic pathways using all profile Hidden Markov 
Models from plantiSMASH [4] that are related to scaf-
fold biosynthesis. While the results (see Additional file 1) 
include some potentially interesting links (e.g., linking 
TPS04 with a cyclohexene-related terpene and link-
ing TPS08 with a naphthalene-related terpene), these 
mQTLs may also be caused by indirect effects, e.g. 
through affecting precursor pools, especially given the 
fact that these terpene synthases have been linked to the 
production of different terpenes in other studies [27, 28].

Our results confirm that indeed (genes in) predicted 
BGCs can be meaningfully linked to mQTLs explain-
ing variation in their metabolic products by GWAS and 
RIL-based studies, allowing the prioritization of BGCs 
for further analysis and the generation of new hypoth-
eses about the functions of these predicted BGCs. Alto-
gether, we conclude that the prediction of BGCs in plant 
genomes for bioprospecting can become a more power-
ful tool for discovery when complemented not only with 
coexpression analysis but also with unsupervised metab-
olomics linked to genetic variation. Most importantly, 
this allows identifying predicted BGCs that overlap with 
genomic loci associated with the abundance of unknown 
molecules, which would constitute candidates for further 
investigation. At the same time, this makes it possible to 
distinguish these from genomic loci involved in the bio-
synthesis of well-known molecules whose biosynthetic 
pathways are known not to be clustered.

Thus, the metabolomics-based systems genetics 
approach described here has the potential to become an 
important technology for the systematic genome-wide 
assessment of biosynthetic genes that can be prioritized 
for heterologous expression using the latest synthetic 
biology methodologies [7].

Limitations
Although we were able to predict several links between 
BGCs and metabolites, we did not have the resources 
to experimentally validate these links through mutagen-
esis or heterologous expression. It is possible that some 
mQTLs in fact represent indirect effects. Also, the RIL 
data from rice resulted in relatively broad mQTL regions, 
in which other genes may be hidden that could be causa-
tive of the metabolic differences underlying the QTLs.

Additionally, the metabolomics datasets were limited 
to shoots and leaves, while many key metabolites may be 
specifically produced in roots. Using a larger number of 
relevant conditions in the future (including root metab-
olomics and samples from biotic or abiotic stress treat-
ments) will make it possible to connect metabolites to 
gene clusters and gene cluster-like genomic loci on larger 
scales.

Finally, in the Arabidopsis metabolomics study applied 
here, we did not generate dedicated metabolite fragmen-
tation data, such as MS/MS and MSn spectra [29], mak-
ing it yet difficult to predict the nature of the unknown 
metabolites linked to putative BGCs of unknown func-
tion. New technologies that generate and exploit metabo-
lite fragmentation data based on molecular networking 
and substructure identification [30–32] will make it eas-
ier to obtain structural information for such unknowns, 
and thus facilitate assessing whether the combination of 
molecular and genetic (enzymatic) features observed in 
an mQTL-BGC pair shows high potential or not.

Additional files

Additional file 1. List of predicted BGCs, list of mQTLs, list of BGCs with 
mQTLs, list of matches for mQTL genes with profile Hidden Markov Mod-
els related to scaffold biosynthesis, overview of LCMS clusters.

Additional file 2: Figure S1. Coexpression analysis of two dioxygenase-
coding genes and two dirigent-enzyme-coding genes on rice chromo-
some 1. Figure S2. Coexpression analysis of the kaempferitrin-associated 
predicted BGC in Arabidopsis thaliana.
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