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Zero‑valent iron sand filtration reduces 
concentrations of virus‑like particles 
and modifies virome community composition 
in reclaimed water used for agricultural 
irrigation
Jessica Chopyk1, Prachi Kulkarni1, Daniel J. Nasko2, Rhodel Bradshaw3, Kalmia E. Kniel4, Pei Chiu5, 
Manan Sharma3 and Amy R. Sapkota1*

Abstract 

Objective:  Zero-valent iron sand filtration can remove multiple contaminants, including some types of pathogenic 
bacteria, from contaminated water. However, its efficacy at removing complex viral populations, such as those found 
in reclaimed water used for agricultural irrigation, has not been fully evaluated. Therefore, this study utilized metagen-
omic sequencing and epifluorescent microscopy to enumerate and characterize viral populations found in reclaimed 
water and zero-valent iron-sand filtered reclaimed water sampled three times during a larger greenhouse study.

Results:  Zero-valent iron-sand filtered reclaimed water samples had significantly less virus-like particles than 
reclaimed water samples at all collection dates, with the reclaimed water averaging between 108 and 109 and the 
zero-valent iron-sand filtered reclaimed water averaging between 106 and 107 virus-like particles per mL. In addition, 
for both sample types, viral metagenomes (viromes) were dominated by bacteriophages of the order Caudovirales, 
largely Siphoviridae, and genes related to DNA metabolism. However, the proportion of sequences homologous to 
bacteria, as well as the abundance of genes possibly originating from a bacterial host, was higher in the viromes of 
zero-valent iron-sand filtered reclaimed water samples. Overall, zero-valent iron-sand filtered reclaimed water had a 
lower total concentration of virus-like particles and a different virome community composition compared to unfil-
tered reclaimed water.
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Introduction
The intense use of groundwater for agricultural and other 
activities has led to substantial aquifer depletions globally 
[1, 2]. Consequently, demand has grown for technolo-
gies, such as zero-valent iron (ZVI) sand filters, to treat 
alternative irrigation water sources and allow for their 

use. These filters—initially designed to remove chlorin-
ated compounds from groundwater—are composed of 
mixtures of sand and zero-valent iron [3]. Currently, they 
are being developed to remove multiple contaminants, 
including microorganisms, from diverse water sources 
[4–10]. Specifically, ZVI reduces Escherichia coli levels 
in water [4, 5], and can reduce titers of multiple viruses, 
including Murine norovirus, and several bacteriophage 
species [6, 7, 11]. However, ZVI has not been evaluated 
on its ability to remove complex viral populations, such 
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as those within reclaimed water used for agricultural 
irrigation.

In reclaimed water, virus-like particles (VLPs) are esti-
mated to be 1000-fold higher than in potable water, with 
the majority of viruses homologous to bacteriophages 
[12]. Bacteriophages are among the most abundant bio-
logical entities on earth and are critical components in 
food web-dynamics and nutrient cycling [13]. Moreo-
ver, phages can influence its bacterial host’s phenotype 
through the horizontal transfer of genes [e.g. antibiotic 
resistance genes (ARGs)] [14–17]. This is potentially 
of concern for wastewater treatment plants, which are 
reported to be reservoirs for ARGs [18]. To address the 
data gaps noted above, this study evaluated DNA viruses 
in reclaimed water and ZVI-sand filtered reclaimed water 
collected during a larger study [19].

Main text
Methods
Sample collection
Samples were collected during a larger greenhouse study 
that evaluated impacts of ZVI-sand filtration on anti-
microbials, E. coli and total bacterial communities in 
reclaimed water used to irrigate lettuce [19]. Briefly, in 
Summer 2016, 240 L of chlorinated effluent was collected 
biweekly from a tertiary wastewater treatment plant in 
the Mid-Atlantic U.S. that employed grinding, activated 
sludge processing, and secondary clarification, and then 
stored treated effluent in an open-air lagoon where it 
was chlorinated prior to land application. After collec-
tion, water was delivered to the greenhouse and stored 
in 189 L storage barrels (Algreen Products Inc., Ontario, 
Canada).

ZVI‑sand filter and filtration process
A commercially-available biosand filter (HydrAid®BioSand 
Water Filter, NativeEnergy, Burlington, VT, USA) was 
modified for use in this experiment [19]. Briefly, the filter 
vessel is made of opaque plastic and has a total volume 
of ~ 55.5 L. Fine filtration sand, provided with the filter [20, 
21] and ZVI particles (Peerless Metal Powders and Abra-
sives Company, Detroit, MI) were sieved (particle size 
range of 400 µm to 625 µm) and mixed, generating a 50:50 
volume/volume mixture. The porosity of the filter was 
approximately 0.52 [22], the average volumetric flow rate 
was ~ 5.6  L/min, the filtration rate was 18  L/min/m2 and 
the approximate ZVI contact time was 2.58 min [19].

To mimic the use of sand filters in agricultural settings 
where irrigation water is not needed every day due to 
periodic rain events, reclaimed water was filtered every 
five days. During each filtration event, a 20 L composite 
of the stored water was gravity filtered to accommodate 
the irrigation needs of the greenhouse study. To maintain 

the filter between filtration events, it was kept submerged 
in reclaimed water, and right before filtration, the five-day 
old water within the filter was completely flushed out by 
pouring 20 L reclaimed water through the filter and dis-
carding it. A new 20 L composite reclaimed water sample 
was then filtered. From the total ~ 20 L ZVI filtrate, a 1 L 
subsample of filtrate (ZW sample) was collected, along 
with 1 L of unfiltered reclaimed water (RW sample), once 
a month for the present study on 6/21/2016, 7/30/2016, 
and 8/9/2016.

VLP quantification
Viral enumeration was performed using the “filter mount 
method” [23]. Briefly, aliquots (1 μL for RW and 100 μL 
for ZW) of formalin fixed samples were suspended in 
sterile deionized water (total volume of 1000 μL), vacuum 
filtered onto a 13 mm 0.02-µm Anodisc filter (Whatman, 
USA), and stained with SYBR Gold (Thermo Fisher Sci-
entific, USA). Triplicate slides for each sample were made 
and counted within 24 h with an Olympus BX61 micro-
scope (20 fields, 1000× magnification). VLPs were quan-
tified with iVision software and differences in VLP counts 
between samples types were tested using a paired t-test 
with Bonferroni correction.

Virome preparation and sequencing
Each sample (1 L) was vacuum filtered through a 0.2 μm 
membrane filter (Pall Corporation, Port Washington, 
NY) to remove the cellular fraction and collected in ster-
ile receiving flasks. Viral particles were then concentrated 
using 100 μL of a Fe solution (4.83 g FeCl3 into 100 mL 
H2O) and 1 mL of a resuspension buffer (0.1 M EDTA-
0.2  M MgCl2-0.2  M ascorbate buffer) [24]. After con-
centration, DNA was extracted from each concentrate 
(500  µL) via the AllPrep DNA/RNA Mini Kit (Qiagen, 
CA, USA). DNA libraries were prepared using the modi-
fied Nextera XT protocol. Briefly, each of the viral DNA 
extracts were used in a tagmentation reaction, followed 
by 13 cycles of PCR with the Nextera i7 and i5 index 
primers and 2× Kapa master mix, and then sequenced on 
the Illumina HiSeq 4000 platform (Illumina, San Diego, 
CA, USA).

Metagenome assembly and analysis
Viromes were assembled and assigned taxonomy/function 
as described previously [25]. Briefly, paired-end reads were 
trimmed, merged, and de novo assembled using Trim-
momatic ver. 0.36 (slidingwindow:4:30 minlen:60) [26], 
FLASh ver. 1.2.11 [27], and metaSPAdes ver. 3.10.1 (with-
out read error correction), respectively [28]. MetaGene 
was then used to predict open reading frames (ORFs) 
from each assembly [29]. Peptide sequences encoded 
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by the predicted ORFs were queried against the peptide 
SEED and Phage SEED databases (retrieved 11/17/2017) 
using protein–protein BLAST (BLASTp ver. 2.6.0+) (E 
value ≤ 1e−3) [30, 31].

Coverage was calculated for each contig by: (i) recruit-
ing quality-controlled reads to contigs via Bowtie2 ver. 
2.3.3 (very sensitive local mode) (ii) processing the 
BAM file for artificial duplicates using Picard (https​://
broad​insti​tute.githu​b.io/picar​d/), and then (iii) using the 
“depth” function of Samtools ver. 1.4.1 to compute the 
per-contig coverage [32, 33]. ORF coverage was denoted 
by start and stop coordinates within each contig. To nor-
malize the abundances, contig and ORF coverages were 
divided by the sum of coverage per million, similar to the 
transcripts per million (TPM) metric used in RNA-Seq 
[34]. Assignment data were visualized using ggplot2 and 
heatplus [35, 36].

Results
VLP abundance
At each sampling date, the VLPs were significantly 
(p < 0.05) less abundant in the ZW samples compared 
to the RW samples (Fig.  1). RW samples contained an 
average of 1.6 × 109, 6.7 × 108, and 7.0 × 108 VLPs/mL 
in June, July, and August, respectively. The ZW samples 
contained an average of 8.6 × 106, 2.8 × 107, and 4.2 × 107 
VLPs/mL in June, July, and August, respectively.

Sequencing effort and assembly
Viral DNA was extracted from the six samples; however, 
it was not possible to obtain enough DNA from the June 
ZW sample for shotgun sequencing. From the samples 
that were sequenced, there were a total of 136,267,357 
read pairs (Additional file  1: Table  S1), with an average 
of 27,253,471 read pairs per virome (± 3,234,104 SD). 
Metagenomic assembly produced a total of 825,658 con-
tigs, with an average of 165,132 contigs (± 30,305 SD) and 
an average of 278,196 ORFs (± 63,500 SD) per virome.

ORF clusters
To assess the percentage of functional similarity between 
RW and ZW viromes, peptide ORFs originating from 
the same sampling dates (July and August) were clus-
tered using CD-HIT (60% peptide similarity) [37]. In July, 
42% of the RW peptide ORFs clustered with 68% of the 
ZW peptide ORFs. For August, the percentage of shared 
function increased for the reclaimed sample; 60% of the 
RW peptide ORFs clustered with 61% of the ZW peptide 
ORFs (Additional file 2: Fig. S1).

Taxonomic assignment
Similar to other virome studies [12], between 32–38% 
of contigs could be assigned a taxonomic representative 
(Additional file  1: Table  S2). For both the RW and ZW 
viromes, viral phyla (51–67%) accounted for the major-
ity of the normalized abundance of the taxonomically 
assigned contigs, followed by bacteria (11–29%) and 
unknown (17–23%). However, the proportion of bacteria-
assigned contigs was greater in the ZW viromes ( ~ 29%) 
than the RW (11–17%) (Fig. 2a).

The most abundant viral taxonomic classifications for 
each virome ( ~ 98% of all viral classified taxa) belonged 
to the dsDNA phages of the order Caudovirales (Fig. 2b), 
largely Siphoviridae (51–54%), followed by Myoviri-
dae (28–31%), and Podoviridae (13–16%). The remain-
ing ~ 2% of viral sequences were assigned as unclassified 
phage and viruses  with putative hosts archaea, amoeba, 
plants, or vertebrates.

Functional assignment
For both sample types the SEED Subsystem, DNA metab-
olism, was the most abundant, accounting for 20–30% of 
the total normalized abundance assigned to function-
ally classified peptide ORFs. This was followed by phage 
elements (11–17%), and protein metabolism (8–10%) 
(Fig. 3a). Annotated SEED Subsystem assignments were 
parsed for those assigned as resistant to antibiotics and 
toxic compounds, which were only between 1 and 2%. 
Among the putative antibiotic and toxic compound 
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Fig. 1  Epifluorescent microscopy counts of virus-like-particles 
(VLPs) in reclaimed water (RW) and zero-valent iron sand filtered 
reclaimed water (ZW). Samples were collected monthly from June 
through August. Data presented as mean ± SD, denoted by error 
bars. Significance determined relative to unfiltered reclaimed water at 
corresponding sampling dates (*p < 0.05)
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annotations, genes for Beta-lactamase were dominant 
in both of the August viromes. Additionally, the ZW 
viromes had a greater normalized abundance than all of 
the RW viromes for: cobalt-zinc-cadmium resistance, 

copper homeostasis, multidrug resistance efflux pumps, 
fluoroquinolone resistance, methicillin resistance in 
staphylococci, zinc resistance, mercuric reductase, arse-
nic resistance, and mercury resistance operon (Fig. 3b).

ZW
 Ju

ly

RW
 Ju

ly

RW
 Ju

ne

RW
 Aug

us
t

ZW
 Aug

us
t

Plasmaviridae
Tymoviridae
Microviridae
Guttaviridae
Corticoviridae
Salterprovirus
Turriviridae

Ampullaviridae

Lavidaviridae

Pleolipoviridae

Fuselloviridae
Unclassified archeal virus
Poxviridae
Sphaerolipoviridae
Bicaudavirus

Ligamenvirales

Tectiviridae
Aeropyrum virus

Inoviridae

Unclassified Caudovirales
Unknown phage
Podoviridae
Myoviridae
Siphoviridae

Water Type
RW
ZW

Putative Host
Archea
Vertebrate 
Bacteria
Amoeba 

Taxonomic Assignment
Viruses Bacteria Unknown 

Archaea Eukaryota

Planta b

Log10 (Normalized Abundance)

0

25

50

75

100

RW RW ZWRW ZW

 July AugustJune

R
el

at
iv

e 
A

bu
nd

an
ce

 (%
)

0 1 2 3 4 5

Other

Fig. 2  Taxonomic composition of reclaimed water (RW) and zero-valent iron sand filtered reclaimed water (ZW). a Percent of the normalized 
abundances (relative abundance) of the taxonomic assignments for RW and ZW viromes. b Heatmap showing the normalized abundances 
(logx + 1 transformed) of the viral taxa in the RW and ZW viromes. The heatmap has samples as columns (colored by water type) and viral taxa as 
rows (colored by putative host). Normalized abundance measured as contig coverage divided by the sum contig coverage per million

Fig. 3  Functional composition of reclaimed water (RW) and zero-valent iron sand filtered reclaimed water (ZW). a Percent of the normalized 
abundances (relative abundance) of the SEED subsystems assignments for RW and ZW viromes. b Normalized abundance of antibiotic resistance 
genes in RW and ZW viromes. Shapes denote month samples were collected (June, square; July, triangle; August, circle) and color denotes water 
type (RW, light blue; ZW, dark blue). Normalized abundance measured as ORF coverage divided by sum ORF coverage per million

(See figure on next page.)



Page 5 of 8Chopyk et al. BMC Res Notes          (2019) 12:223 

Beta
-la

cta
mas

e

Cob
alt

-zi
nc

-ca
dm

ium
res

ist
an

ce

Cop
pe

r ho
meo

sta
sis

Mult
idr

ug
 re

sis
tan

ce
 ef

flu
x p

um
ps

Res
ist

an
ce

 to
 flu

oro
qu

ino
lon

es

Amino
gly

co
sid

e ad
en

yly
ltra

ns
fer

as
es

Meth
ici

llin
res

ist
an

ce
in

Stap
hy

loc
oc

ci

Zinc
res

ist
an

ce

Merc
uri

c red
uc

tas
e

Arse
nic

res
ist

an
ce

Merc
ury

res
ist

an
ce

op
ero

n

Res
ist

an
ce

 to
Vanc

om
yc

in

Fos
fom

yc
in

res
ist

an
ce

Stre
pto

thr
ici

n res
ist

an
ce

Resistance to antibiotics and toxic compounds

Month
August

July

June

Water Type
RW
ZW

SEED Functional Categories

DNA Metabolism

Phage Elements
Protein Metabolism
Cell Wall and Capsule
Carbohydrates

Cell Division and Cell Cycle
Motility and Chemotaxis
Cofactors, Vitamins, etc.
Amino Acids and Derivatives

RNA Metabolism

Virulence, Disease and Defense
Stress Response
Others (<3%)

RW RW ZWRW ZW

0

25

50

75

100

R
el

at
iv

e 
A

bu
nd

an
ce

 (%
)

a

b

July AugustJune

0

250

500

750

1000

N
or

m
al

iz
ed

 A
bu

nd
an

ce



Page 6 of 8Chopyk et al. BMC Res Notes          (2019) 12:223 

Discussion
Reclaimed water is an important emerging resource that 
can help alleviate stress on freshwater systems [38, 39]. 
However, concerns remain regarding microbiological and 
chemical constituents persisting in reclaimed water, and 
whether treatment technologies can be used for further 
remediation. Here, we found that reclaimed water har-
bors 108–109 VLPs/mL, comparable to the abundances 
published in previous similar studies [12, 40]. After ZVI-
sand filtration, the number of VLPs was significantly 
lower at all dates, ranging between 106 and 107 VLPs/mL, 
a roughly 1–2 log reduction. Previous studies have sug-
gested that virus removal from water during ZVI-sand 
filtration is likely attributed to adsorption and inactiva-
tion via iron oxides within the iron [6, 41]. You et al. sug-
gested that as water flows through a ZVI-sand filter, new 
iron oxides are formed continuously, generating addi-
tional adsorption sites that can extend the life of the filter 
[6].

Our findings are similar to recent results on the reduc-
tion efficiency of sand filtration alone for viruses φX174, 
MS2, and AiV ( < 1–2 log) and lower than previous stud-
ies on ZVI-sand filtration, which reported that φX174 
and MS-2 were reduced by 4–6 logs [6, 7]. However, 
these studies focused largely on the removal of a few spe-
cific viral species and, even so, have found that removal 
efficiencies vary among species [7]. Here, we used epi-
fluorescence microscopy to look at the entire viral 
population. This includes hundreds to thousands of dif-
ferent species, with a range of capsid sizes and isoelectric 
points, which may explain the smaller removal efficiency 
[42]. Moreover, while the log-reduction is lower than 
expected for the overall population, the total VLP con-
centration post ZVI-sand filtration is still comparable to 
those described in well and potable water [12, 43].

In terms of viral taxonomic composition, both RW and 
ZW viromes were dominated by Siphoviridae, which 
are abundant in human waste and reclaimed water [12, 
44]. These viruses present a unique risk, as the majority 
of cultured representatives are capable of lysogeny and, 
thus, may facilitate horizontal gene transfer among bacte-
ria [45]. Additionally, in both sample types the functional 
profiles were largely composed of genes related to DNA 
metabolism (Fig. 3a). A previous study of wastewater also 
found these genes to be highly abundant and attributed 
this to the elevated metabolic activity within wastewater 
treatment plants [40].

In addition, ZW viromes had a greater relative abun-
dance of bacterial assigned contigs. In virome studies, 
sequences with significant homology to bacteria are 
sometimes unknown prophage embedded in a bacterial 
genome present in the database, or phages carrying host 
genes [12, 46]. During use, ZVI produces ROS, which 

can promote prophage induction [47, 48]. Thus, dur-
ing filtration, ROS may stimulate the induction of inte-
grated prophages. However, while the abundance of some 
genes is higher in the ZW viromes, the overall number 
of gene copies is likely still higher in the RW sample due 
to the increased number of total VLPs. Therefore, addi-
tional work is necessary to determine whether the bac-
terial assigned contigs are indeed prophage and whether 
this impacts the dissemination of bacterial genes in water 
reuse systems.

Limitations
Our study was limited by sample size (n = 6), which 
prevented a rigorous statistical analysis. In addition, we 
could not obtain enough DNA from the June ZW water 
sample for shotgun sequencing and, therefore, a compar-
ison between RW and ZW water for June was not possi-
ble. Finally, because we were not able to include a second 
sand-only filter control—due to the set-up of the larger 
study—we were unable to tease out the effects of ZVI 
versus sand in terms of virus removal.

Additional files

Additional file 1: Table S1. Sequencing statistics for viral metagenomic 
samples. Table S2. Viral metagenomic contigs assigned taxonomy.

Additional file 2: Figure S1. ORF clustering in paired reclaimed water 
(RW) and ZVI sand filtered reclaimed water (ZW) samples from July and 
August.
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