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Exploration of interaction scoring criteria 
in the CANDO platform
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Abstract 

Objective: Ascertain the optimal interaction scoring criteria for the Computational Analysis of Novel Drug Oppor-
tunities (CANDO) platform for shotgun drug repurposing to improve benchmarking performance, thereby enabling 
more accurate prediction of novel therapeutic drug-indication pairs.

Results: We have investigated and enhanced the interaction scoring criteria in the bioinformatic docking protocol 
in the newest version of our platform (v1.5), with the best performing interaction scoring criterion yielding increased 
benchmarking accuracies from 11.7% in v1 to 12.8% in v1.5 at the top10 cutoff (the most stringent one) and corre-
spondingly from 24.9 to 31.2% at the top100 cutoff.
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Introduction
Drug discovery is an arduous process that requires many 
years of effort and costs billions of dollars before new 
ones are approved for patient use [1, 2]. Recent data indi-
cate that the average cost and time to market for a new 
drug are about $3 billion and 14 years, respectively [3, 4]. 
New paradigms are therefore imperative to make drug 
discovery more efficient and financially sustainable.

As of 2013, there were ≈ 1453 human use drugs FDA 
approved for a variety of indications/diseases with an 
accompanying trove of data on their safety profiles and 
efficacy [5]. A vast majority of these drugs are small 
molecules, which are inherently promiscuous in their 
potential interactions with macromolecules in their envi-
ronment, resulting in undesirable off-target or side effects 
[6–11]. The multitargeting nature of small molecules, and 
the presence of these off-target effects, provides support 
for the repurposing of drugs for indications for which 
they are not approved [7, 11–15]. The cost, time, and, 
most importantly, risk to go from “bench to bedside” for 
such repurposed drugs are significantly decreased.

The first version (v1) of the Computational Analysis of 
Novel Drug Opportunities (CANDO) platform for mul-
titarget shotgun drug repurposing [7, 11, 14–19] imple-
mented a modelling pipeline to predict interactions 
between 46,784 protein structures and 3733 human use 
compounds. Various protocols, representing software 
components, are implemented within each pipeline to 
calculate an interaction score for each drug-protein pair 
corresponding to the potential binding affinty. Applying 
this across entire proteomes results in compound-pro-
teome interaction signatures that are then compared and 
ranked according to similarity. We then generate new 
indication associations for drugs based on the similar-
ity of their interaction signatures to drugs with a known 
indication, i.e., make predictions about putative repur-
posable therapeutics for every indication with at least 
one known drug. Furthermore, we quantify the expected 
accuracy of our predictions by performing a leave-one-
out benchmarking procedure which determines whether 
an associated drug for each known drug-indication pair 
is captured within a cutoff of a list of compounds sorted 
by proteomic signature similarity to the “left out” drug.

In the v1 platform, we used an interaction scoring pro-
tocol that integrated bioinformatics and cheminformatics 
tools to calculate ≈ one billion scores. We updated our 
platform to v1.5 by exploring the use of different bio- and 
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cheminformatics software to vary these interaction 
scores to discover the best performing scoring protocol. 
The pipelines implementing these new scoring protocols 
were subsequently benchmarked, the results of which are 
reported here.

All of the pipelines with the new interaction scoring 
protocols in CANDO v1.5 yield promising benchmark 
performance. However, there is some variance depending 
on how many top putative drug candidates are generated 
and benchmarked: At the lowest cutoff (top10 putative 
drug candidates), the pipeline with the best performance 
uses only the cheminformatics interaction score. At 
higher cutoffs (top25–top100), the pipeline with the best 
performance combines the bioinformatic and cheminfor-
matics outputs for the interaction scores. These results 
help guide future experimental validation studies of the 
platform by enabling us to select the appropriate interac-
tion scoring protocol based on the number of putative 
drug candidates to be tested.

Main text
Methods
The CANDO v1.5 pipeline is outlined and detailed in 
Fig. 1. Refer to Additional file 1 for more details regarding 
the CANDO platform and the v1.5 pipeline.

Ranking drug lists and benchmarking metrics
The RMSDs in each row of the compound-compound 
similarity matrix (Fig. 1d) are sorted to yield ranked simi-
larity lists for each compound (Fig. 1e). Each drug asso-
ciated with an indication is left out and checked to see 
if it is captured within a certain cutoff in the ranked list 
to any of the other remaining ones [associated with that 
indication] (Fig. 1f ). The cutoffs used typically are top10, 
top25, top50, and top100, reflecting the top ranked 
10–100 similar compounds for a given drug.

This procedure is repeated iteratively for all drugs asso-
ciated with every indication for a particular cutoff, result-
ing in the indication accuracy. Mathematically, indication 
accuracy is calculated using the formula c

d
· 100 , where c 

is the number of times at least one drug with the same 
indication was captured within a particular cutoff and d 
is the total number of drugs approved for that indication. 
Taking the mean of these accuracies (for all 1439 indica-
tions with at least two approved drugs) gives the average 
indication accuracy for a pipeline at a particular cutoff.

The other benchmarking metrics used are the average 
pairwise accuracy which is a weighted average of all indi-
cation accuracies based upon the number of approved 
drugs for each indication, and indication coverage, which 
is the number of indications with a non-zero accuracy, 
i.e., at least one approved drug that was left out was suc-
cessfully recaptured within a cutoff.

Differences between versions 1 and v1.5 of the CANDO 
platform
For v1.5, we use Open Babel for the chemical finger-
print comparison between all compounds and predicted 
binding site ligands for each protein, compared to using 
OpenEye ROCS in v1 [16]. Pipeline modifications have 
been made to leverage OBscore and/or BSscore to pop-
ulate the interaction matrix in multiple pipelines for 
CANDO v1.5, whereas only the BSscore was used in 
CANDO v1 to calculate compound-protein interactions.

The following pipelines were generated in CANDO 
v1.5: Best OB, Best BS, Best OB+BS, and Best OBxBS. 
The values in the matrix for each compound-protein 
interaction in the first two pipelines use the OBscore; 
Best OB is the highest OBscore between the compound 
and all predicted binding site ligands for each protein, 
while Best BS is the OBscore that corresponds to the 
best local binding site prediction using COFACTOR. 
The last two pipelines involve adding and multiplying the 
OBscore and BSscore for each compound-protein inter-
action; the highest sum or product between the com-
pound and the predicted binding site ligands was chosen 
as the interaction score.

By removing the cutoffs for interaction scores (BSs-
core and ROCSscore in CANDO v1 [16]), we decreased 
the number of compound-protein interactions with zero 
scores, which we empirically determined had a negative 
effect on benchmarking performance. Additional minor 
modifications have been made in CANDO v1.5 software 
to reduce the number of compounds with all-zero pro-
teome interaction signatures.

Results
We generated compound-proteome interaction matri-
ces using the BSscore and OBscore interaction scoring 
schemes to implement the following pipelines: Best OB, 
Best BS, Best OB+BS, and Best OBxBS. These pipelines 
were compared to the one used in CANDO v1, as well 
as random controls, with respect to benchmarking per-
formance using three evaluation metrics: average indica-
tion accuracy, average pairwise accuracy, and indication 
coverage.

Comparison of v1 and Best OB pipelines
The CANDO v1.5 Best OB pipeline average indication 
accuracy is higher at all cutoffs when comparing to the 
pipeline from CANDO v1, increasing from 11.7 to 12.8% 
for the top10 cutoff. The relative increase in average 
indication accuracy for the remaining cutoffs are 3.0% 
(top25), 4.1% (top50), and 6.3% (top100). The indica-
tion coverage for Best OB is greater than v1 at all cutoffs 
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(30–70 more non-zero indications) except top10, where 
the coverage for v1 and Best OB is about the same at 562 
and 563 indications, respectively.

We calculated the Kolmogorov–Smirnoff test p-value 
to determine that the distribution of indication accura-
cies was significantly different between v1 and Best OB 
pipelines for all cutoffs (Fig. 2). Furthermore, the distri-
butions in Fig.  2 show that the accuracies for Best OB, 
relative to v1, are skewed to the right, i.e., Best OB has a 
greater number of indications with accuracies > 50%.

Comparison of all pipelines
Figure  3 shows the accuracies and coverages of all five 
pipelines at different cutoffs. All scoring metrics in v1.5 
did comparably well to one another and better than the 
pipeline used in the CANDO v1 platform. Best OB pro-
duces the highest average indication accuracy of 12.8% 
and 19.6% for the top10 and top25 cutoffs. At higher cut-
offs, the Best BS, OB+BS, and OBxBS pipelines perform 
better for the average and pairwise indication accuracy 
metrics, with OBxBS having the highest average indica-
tion accuracy of 31.8% at the top100 cutoff.

The Best OB pipeline average indication accuracy is five 
times greater at the top10 cutoff when compared to the 
uniform distribution random control (2.0 to 12.8%). This 
trend remains consistent as the cutoff increases, with 
relative differences between random control and Best OB 
of 14.5, 14.7, and 13.9% for the top25, top50, and top100 
cutoffs. The average pairwise accuracies and indication 
coverage are also higher for the Best OB pipeline when 
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Fig. 1 CANDO platform workflow. a Binding sites are predicted for 
each of the 46,784 proteins in the CANDO protein structure library 
using the bioinformatic tool COFACTOR [20–23], resulting in a 
BSscore. b The native ligand in the predicted binding site is compared 
to all 3,733 compounds in the CANDO putative drug library by 
calculating the chemical fingerprints using the FP4 fingerprinting 
method in Open Babel for each structure, resulting in an OBscore 
[24]. c Each compound-protein interaction is given a score based 
upon the OBscore and/or BSscore, which is then used to populate 
the interaction matrix. d The similarity score between every pair of 
compound-proteome interaction signatures (the vectors of 46,784 
interaction scores) is calculated by root-mean-squared deviation 
(RMSD) which are then used to populate the compound-compound 
similarity matrix. e The compound-compound similarities are sorted 
and ranked by RMSD. f Benchmarking is accomplished by measuring 
the recovery rate of the known approved drugs, i.e., per indication 
accuracies are obtained based on whether or not pairs of drugs 
associated with the same indication can be captured within a certain 
cutoff of each of their ranked compound similarity lists; other similar 
compounds that fall within a particular cutoff are hypothesized 
to be repurposeable drugs and serve as predictions. The CANDO 
platform utilizes a proteomic approach for drug repurposing, with the 
hypothesis that drugs with similar interaction signatures will behave 
similarly

▸
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compared to the random control with a pairwise accu-
racy increase from 5.7 to 21.7% and coverage increase 
from 238 to 563 at the top10 cutoff. The relative increases 
between the Best OB and random control are 18.9, 17.8, 
and 13.7% for average pairwise accuracy and 305, 245, 
and 207 for the indication coverage at the remaining 
three cutoffs. The second random control used in this 
study based on a hypergeometric distribution converges 
to similar values as the first one.

Discussion
Our results suggest that for preclinical validations of 25 
or fewer compounds, the Best OB pipeline, which has the 
highest average indication accuracy, pairwise accuracy, 
and indication coverage at the top10 and top25 cutoffs, 
should be used to generate putative drug candidates. In 
contrast, the results show that at higher cutoffs (top50 
and top100) the Best OBxBS and Best OB+BS pipelines 
yield better benchmarking performance, indicating that 
these two pipelines should be utilized for validation stud-
ies consisting of 50 or more putative drug candidates.

Conclusions
Overall, our results illustrate the improved benchmark-
ing performance of the updated CANDO v1.5 platform 
and its structure-based pipelines relative to v1, which in 
turn translates to greater predictive power for shotgun 
drug repurposing and mechanistic understanding. The 
top putative drug candidates and targets generated by 
these newer pipelines in v1.5 will aid us in discovering 
novel treatments and mechanisms for specific indications 
in future validation studies.

Limitations
The CANDO platform is used to generate top rank-
ing putative drug candidates for every indication. These 
candidates need to be experimentally validated to ensure 
they represent potential leads and eventually repurposed 
drugs for a specific indication.

Other possible scoring protocols need to be explored to 
determine if OBscore and BSscore most accurately quan-
tify the compound-protein interactions. Further studies 

Fig. 2 Comparison of indication accuracy distributions. A histogram of the non-zero accuracy values for the v1 (blue) and Best OBscore (yellow) 
pipelines at four cutoffs is plotted. The Kolmogorov–Smirnoff test, used to determine similarity (or lack thereof ) of two distributions, indicates that 
the two pipelines have significantly different distributions of indication accuracies (p-value< 0.05). The newer v1.5 Best OB pipeline outperforms its 
predecessor, yielding a greater number of indications with accuracies > 50%
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with different cheminformatics and bioinformatic tools 
may also provide further insight into the behaviour of the 
platform and are currently underway, which demonstrate 
that continued development of CANDO by adding novel 
features and pipelines greatly increases its predictive 
power for future drug repurposing efforts particularly 
when these other pipelines and optimization techniques 
are used in combination [11, 19].

Additional file

Additional file 1. This file contains a detailed description of methods and 
additional results.
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Fig. 3 Accuracies and coverages of five CANDO pipelines at various cutoffs using different compound-protein interaction scoring metrics. Random 
(navy) is a random control that is calculated using the average of 100 randomly generated interaction matrices. v1 (purple) is the pipeline from the 
first version of the CANDO platform which used the BScore to quantify compound–protein interactions, with the chemical similarity comparison 
done using OpenEye ROCS [7, 16]. The Best OB pipeline (magenta) uses the highest OBscore for each compound-protein interaction. Best BS (red) 
uses the OBscore corresponding to the fingerprint comparison between each compound and highest BSscore binding site ligand for each protein. 
Best OB+BS (orange) is the highest summation of OBscore and BSscore for each compound-protein interaction, and Best OBxBS (yellow) is the 
highest product. The average indication and pairwise accuracies for the top10 (triangle), top25 (cross), top50 (square), and top100 (X) cutoffs are 
shown for each pipeline. The size of the cutoff symbol corresponds to the indication coverage. By varying the interaction scoring scheme in v1.5, 
we are able to discern that the Best OB protocol results in the highest benchmarking performance, particularly at the top10 and top 25 cutoffs
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