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Abstract 

Objective:  A comprehensive analysis of RNA-Seq data uses a wide range of different tools and algorithms, which 
are normally limited to R users only. While several tools and advanced analysis pipelines are available, some require 
programming skills and others lack the support for many important features that enable a more comprehensive data 
analysis. There is thus, a need for a guided and easy to use comprehensive RNA-Seq data platform, which integrates 
the state of the art analysis workflow.

Results:  We present the tool Shiny-Seq, which provides a guided and easy to use comprehensive RNA-Seq data 
analysis pipeline. It has many features such as batch effect estimation and removal, quality check with several visu-
alization options, enrichment analysis with multiple biological databases, identification of patterns using advanced 
methods such as weighted gene co-expression network analysis, summarizing analysis as power point presentation 
and all results as tables via a one-click feature. The source code is published on GitHub (https​://githu​b.com/schul​tzela​
b/Shiny​-Seq) and licensed under GPLv3. Shiny-Seq is written in R using the Shiny framework. In addition, the applica-
tion is hosted on a public website hosted by the shinyapps.io server (https​://schul​tzela​b.shiny​apps.io/Shiny​-Seq/) and 
as a Docker image https​://hub.docke​r.com/r/makah​o/shiny​-seq.
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Introduction
The scientific community is continuously trying to 
improve their understanding of genetic mechanisms 
in biological systems in a global way. Particularly tran-
scriptome analysis has become an everyday research 
tool to study the regulation and the function of complete 
genomes [1]. Here, Next Generation Sequencing (NGS) 
has become one of the preferred methods. Constantly 
dropping sequencing costs and more than 25,000 (Array-
Express, NCBI GEO) publically available transcriptome 
datasets help us to better understand the complex rela-
tionship between genotype and phenotype. With growing 
accessibility, still, only the minority of investigators in the 

life and medical sciences has the means to analyze and 
leverage this enormous treasure of data. Understanding 
RNA-Seq data requires several successive steps in order 
to analyze, visualize and interpret it. The key steps are 
(i) import of data, (ii) normalization, (iii) analysis using 
statistical techniques such as hypothesis testing, (iv) 
functional enrichment analysis using various biological 
databases, and (v) identification of biological patterns 
using advanced methods such co-expression network 
analysis. Integrated, simply accessible, easily expand-
able and inexpensive tools are still missing. Shiny-Seq is 
providing such an analysis environment for the broader 
community in the life and medical sciences.

Main text
Shiny‑Seq section
In the following, we provide details regarding features 
implemented in the various steps of Shiny-Seq. The main 
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text consists of three different sections: data pre-process-
ing (1), exploratory data analysis (2), and downstream 
analysis (3) and its respective subsections.

Data pre‑processing
Input  Our Shiny-Seq pipeline provides two different 
starting points for the analysis. First, the count table, 
which is the universal file format produced by most of 
the alignment and quantification tools. Second, the tran-
script-level abundance estimates provided by ultrafast 
pseudoalignment tools like kallisto [2]. For this purpose, 
the user has to provide the location of the directory con-
taining the files generated by kallisto. Another essential 
input is the annotation file, a matrix that stores for each 
sample different categorical variables e.g. treatment, gen-
otype, sex or day of the experiment.

Normalization  The package DESeq2 [3] normalizes the 
dataset by computing a size factor for each sample. The 
size factor is calculated by taking the median ratio of each 
sample over a reference or pseudo sample. Shiny-Seq uses 
the default parameter recommended by the Bioconductor 
DESeq2 workflow for RNA-Seq [4] data but also allows to 
control for log2 fold change shrinkage and multiple test-
ing, custom p-value and fold change cut-offs.

Batch effect analysis  Batch effects can be induced by 
either known variables such as technical heterogeneity 
and time of experiment or by unknown variables [5]. In 
Shiny-Seq, the function removeBatcheffect from LIMMA 
[6] is used to account for the batch effect from known 
sources. For unknown variables, Shiny-Seq uses SVA [5] 
to construct surrogate variables to account for technical 
variability. The influence of potential variables known to 
cause the batch effect can then be examined by PCA. The 
detected batch effects are modeled within the DESeq2 
study design and the batch corrected data is used for all 
respective visualizations.

Additionally, Shiny-Seq can estimate the influence of 
the batch effect based on an ANOVA model and visualize 
it via a source of variation plot showing the effects sizes 
of the modeled factors.

Exploratory data analysis
Differential gene expression analysis  Shiny-Seq supports 
DeSeq2’s differential gene expression testing (DGEA) 
based on a negative binomial distribution model. DeSeq2 
uses variance-mean estimation for RNA-Seq data and the 
Wald test. The Wald test assumes that the Z-statistic takes 
a standard normal distribution with zero mean and unit 
variance. Additionally, Shiny-Seq supports p-value evalu-
ation and correction, where a histogram is generated, 
which helps to decide whether the statistical hypothesis 

assumption is violated. If necessary, the correction can be 
performed using fdrtool [7].

Co‑expression network analysis  In contrast to conven-
tional DGEA, Shiny-Seq also provides a co-expression 
network analysis (CENA) function using WGCNA [8]. 
This method allows identifying modules based on cor-
relation followed by network analysis. It takes the pre-
processed data and the annotation file as inputs but can 
also take results from the DEGA as a starting point. Note 
that batch corrected data is used as input for the CENA if 
a batch correction was selected beforehand. The output is 
the typical module-condition relationship heat map and a 
table including module name, number of genes and iden-
tified hub genes in each module. Furthermore, the identi-
fied modules are integrated into Shiny-Seq in a way that 
the user can perform the major parts of the downstream 
analysis e.g. functional enrichment analysis, heat maps, 
and Venn diagrams based on these results.

Downstream analysis
Functional prediction  After DGEA and CENA a func-
tional prediction based on gene set enrichment analysis 
(GSEA) can be performed. Shiny-Seq uses biological data-
bases such as KEGG [9], GO [10] and Broad’s molecular 
signatures database (MSigDB) [11] in clusterprofiler’s 
[12] GSEA to take advantage of already publicly available 
knowledge, which assists during the interpretation pro-
cess. Shiny-Seq uses FDR correction by the Benjamini and 
Hochberg method, which reduces the proportion of false 
positive results significantly.

Transcription factor binding side overrepresentation anal‑
ysis  Our application also performs a transcription factor 
binding site overrepresentation analysis in the promoter 
regions for all groups of genes being identified by DGEA 
and CENA. This analysis generates a table with informa-
tion like enrichment p-value about potential transcription 
factor binding sites discovered by searching promoters 
databases TRANSFAC [13] and Jaspar [14] in human or 
mouse, respectively. All predicted transcription factors 
are displayed in a new table and are additionally marked 
in the table of differentially expressed genes. This analysis 
provides valuable information about potential upstream 
regulators responsible for the observed genotype. Shiny-
Seq uses pcaGopromoter [15] to predict transcription fac-
tors.

Visualization  Shiny-Seq provides a multitude of visu-
alizations in the respective analysis steps (Fig.  1). This 
includes plots such as heat maps and volcano plots, which 
are commonly used during the analysis of RNA-Seq 
data. A heat map, for example, visualizes relationships 
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Fig. 1  Data pre-processing (a) box plots of samples (before and after normalization), PCA (2D and 3D) of samples (before, after normalization 
and after batch correction; interactive), sample correlation plot (before and after batch correction), source of variation plot (before and after batch 
correction; interactive); Exploratory analysis (b): box plot of single gene expression including statistics, p-value evaluation histogram, MA plot, 
module-condition relationship heat map (CENA), Venn diagram (interactive), volcano plot (interactive), fold change fold change plot (interactive), 
heatmap of 1000 most variable genes, own gene list, DEGA and CENA results; Downstream analysis (c): dot plots of GSEA results (interactive), 
visualization of KEGG pathways (DEGA genes or all present genes), TFBS plot
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between samples and genes. Shiny-Seq uses heat maps for 
the visualization of differentially expressed genes, 1000 
genes having the highest variance within the data and all 
present and differential expressed transcription factors. 
Volcano plots help to visualize differentially expressed 
genes obtained from DGEA. While heat maps and vol-
cano plots are used to visualize e.g. hypothesis test results 
of a single comparison, they do not have the capability to 
compare results obtained from multiple comparisons. To 
tackle this Shiny-Seq is providing Venn diagrams and a 
fold change fold change plots, where the names of genes 
of interest can be identified by selecting them interactively 
in the respective plot. Static plots e.g. heat maps can be 
download as vector graphic for further usage. If meaning-
ful, some of the plots can be further customized within 
Shiny-Seq.

Report generation
Another unique feature is the compilation of all outputs 
generated during each step of the analysis and summariz-
ing these results in a PowerPoint presentation, as well as 
respective tables, which can be downloaded and shared 
with colleagues and collaborators. It includes QC plots 
e.g. box plots and PCA plots before and after normaliza-
tion, top-10 up-regulated and down-regulated genes, and 
enrichment analysis results. The R package ReporteRs 
[16] is used to generate a presentation.

Discussion
Global transcriptome analysis has become a standard 
approach in research but also in clinical settings. At the 
same time, experts who can analyze this kind of data are 
still the limiting factor. Shiny-Seq provides a framework 
for analyzing such data in a transparent and reproducible 
manner for NGS service providers and NGS competence 
centers, but also for end users with limited scripting 
experience. It offers a huge functionality combined with a 
guided and intuitive workflow and a comprehensive and 
time-saving summary functionality. Providing Shiny-Seq 
as a fully functional Docker image, there is no need to 
install R. The code, all packages, and their dependencies 
are installed within the Docker image and this is available 
on Docker Hub. By using Shiny as graphical interface, the 
user does not need any computer or programming skills.

Limitations
While the development is complete from the end-user 
perspective, the internally used R code is still cluttered. 
Moreover, incorporation of new features and addi-
tional customization of the visualizations would further 
improve Shiny-Seq. The application currently supports 
only enrichment analysis of gene ontologies, pathways, 

and molecular signatures. The plan is to extend the sup-
port to disease ontologies as well. In the future, Shiny-
Seq will get the capability to support also count tables 
from transcript quantification files generated by other 
tools such as Star [17], HTSeq-counts [18], and Sailfish 
[19]. The export of a DESeq2 RData object would provide 
more flexibility for users with programming experience.
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