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Abstract 

Objective:  Living cells display complex and non-linear behaviors, especially when posed to environmental threats. 
Here, to understand the self-organizing cooperative behavior of a microorganism Pseudomonas aeruginosa, we devel-
oped a discrete spatiotemporal cellular automata model based on simple physical rules, similar to Conway’s game of 
life.

Results:  The time evolution model simulations were experimentally verified for P. aeruginosa biofilm for both control 
and antibiotic azithromycin (AZM) treated condition. Our model suggests that AZM regulates the single cell motility, 
thereby resulting in delayed, but not abolished, biofilm formation. In addition, the model highlights the importance 
of reproduction by cell to cell interaction is key for biofilm formation. Overall, this work highlights another example 
where biological evolutionary complexity may be interpreted using rules taken from theoretical disciplines.
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Introduction
Under external stress, microorganisms, such as bacte-
ria and fungi, are able to produce cooperative response 
by forming biofilm. Biofilm are aggregates of cells, often 
produced through quorum sensing mechanisms or due 
to the secretion of extracellular polymeric substance [1]. 
They often pose problems to food and water safety. On 
the other hand, biofilm caused by pathogenic agents in 
human often show drug resistance [2]. Thus, each year, 
billions of dollars are at risk due to biofilm-mediated 
damage [3]. Despite the immense research over decades 
using low to high throughput experimental methodolo-
gies, the progress in understanding the regulatory mech-
anisms or controlling the progression of biofilm is highly 
limited. Therefore, better knowledge in biofilm growth 
and evolution is necessary, and scientists could explore 
interdisciplinary strengths to fill the missing gaps.

The pathogenic Gram-negative bacteria P. aeruginosa, 
is well-known for its intrinsic and acquired antibiotic 
resistance. It facilitates chronic infections in human by 

its rapid ability to form biofilms [4]. Most previous works 
have mainly studied P. aeruginosa antibiotic resistance in 
their planktonic or single cell cultures. However, P. aerug-
inosa infection quickly spreads and form biofilm in cer-
tain diseases such as in the cystic fibrosis of the lung [5]. 
Thus, when infected in human, P. aeruginosa can cause 
death, especially for patients with cystic fibrosis, as they 
form biofilm that are resistant to current multi-drug anti-
biotic regimens [6]. Hence, the species and its biofilm are 
of considerable importance to medical care and patients’ 
well-being.

In this paper, we studied the self-organization of plank-
tonic single cell stage to cooperative biofilm stage of 
P. aeruginosa. For understanding self-organization, a 
large number of theoretical and computational works 
uses continuous differential equation approaches [7, 8], 
where the models require detailed mechanistic param-
eter values that are difficult to obtain from living sys-
tems. To overcome this limitation, here we utilized a 
discrete spatiotemporal computational methodology or 
cellular automata (CA), to predict the growth evolution 
mechanisms of P. aeruginosa [9]. CA models adopt sim-
ple physical rules or differential equations that matches 
experimental observation. By doing so, one can estimate 

Open Access

BMC Research Notes

*Correspondence:  Kumar_selvarajoo@biotrans.a‑star.edu.sg
2 Biotransformation Innovation Platform (BioTrans), Agency for Science, 
Technology and Research A*STAR​, Biopolis, Singapore
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0314-9666
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-019-4795-x&domain=pdf


Page 2 of 6Deveaux and Selvarajoo ﻿BMC Res Notes          (2019) 12:763 

the governing process or rules underlying the prolifera-
tion or cooperative behaviors.

Although there have been several efforts to model bio-
film growth using CA in general [10, 11], here we focused 
on simple rules to specifically test 2-D spatio-temporal 
dynamics of P. aeruginosa biofilm in untreated (control) 
and antibiotic treated conditions.

Main text
Data
For experimental observation, we obtained time-series 
growth profiles of P. aeruginosa performed by Gillis and 
Iglewski [6], see Fig. 1. P. aeruginosa PAO1 biofilms were 
grown into flow cells with confocal microscopy over an 
extended time frame [12, 13]. FAB medium amended 
with 20  μM KNO3 [14], and treated with and without 
sub-MIC of AZM (2  μg/ml) were used for all flow cell 
studies.

Here, data for 2 conditions are shown; (a) without 
(wildtype, WT) and (b) with 2 μg/ml of azithromycin (or 
AZM, a macrolide antibiotic,  WT+AZM). We observe 
that untreated P. aeruginosa rapidly forms clustered 
biofilm within 72  h. The treated cells, although display 

biofilm emergence at 72 h, shows a much slower forma-
tion time.

Methods
Previously, to study cancer cell proliferation in control 
and drug treated conditions, we developed a discrete 
spatiotemporal CA model based on simple rules modi-
fied from Conway’s game of life [14, 15]. The model’s 
rules were iteratively guessed and modified until the 
simulations matched experimental observations [15]. 
The resultant rules were used to infer the proliferation 
properties of the control and treated cancer cells. Here, 
we extended the model to predict the biofilm formation 
of P. aeruginosa.

Spatial temporal cellular automata
Cellular automata model
A 3-D CA model was developed in Matlab code con-
sisting of 400 × 400 × 4 cubic (640,000) cells, with each 
cell having maximum 17 neighbors for the top and bot-
tom planes, while 26 neighbors for other planes. The 8 
corners, however, have a maximum of 7 neighbors, and 
11 neighbors on the edges. We choose the empty initial 
cells large enough to avoid reaching the edges/corners 
within the simulated time steps. Note that our z-axis is 
small as the cells were originally cultured in 2-D flow 
cells plates, where cells often limited to a few layers on 
the vertical axis.

At time = 0 h, for each condition, the cells were popu-
lated with live cells in random orientation that filled the 
spaces similar to Fig.  1. We found 5000 cells (Fig.  2a, 
leftmost panel) were distributed in a way that was simi-
lar to actual cell distribution in Fig. 1. The CA rules (see 
“Cellular automata model rules” section below) were 
applied from time step 1 onwards.

Cellular automata model rules
Our previous cancer CA model had rules that were 
modified from Conway’s game of life. The rules, 
although abstract or oversimplification, can generate 
complex self-organizing spatiotemporal patterns that 
have been explored in numerous scientific fields. Our 
intention here is to first use these popular simple rules 
and gradually modify them to find a suitable set of rules 
for P. aeruginosa.

We adopted a similar approach where we began the 
model with rules:

	 i.	 Any immotile cell with less than X1 live neighbors 
dies, caused by under-population.

	 ii.	 Any immotile cell with X2 or X3 live neighbors 
becomes motile cell on to the next generation.

Fig. 1  Time series confocal microscopy of P. aeruginosa PAO1 colony, 
a without and b with antibiotic (azithromycin or AZM) treatment. c 
Total biomass (μm2/μm3) in time. The profiles represent the average 
response of 5 independent experiments, their standard deviation is 
presented in the original experimental plot [6]. Biomass will be used 
as a proxy for cell numbers for simulations (Figures modified from [6], 
and permission to reproduce obtained)
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Fig. 2  Simulations of spatiotemporal evolution of P. aeruginosa using CA model. 2-D top view for 15 time steps, a WT and b WT + AZM. c 
Cell growth in time WT (blue) and WT + AZM (red), dotted lines indicate experimental profiles. d Cell growth number at 15th time step for 30 
independent simulations, WT (left, blue) and WT + AZM (right, red)
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	iii.	 Any immotile cell with more than X4 neighbors 
dies, caused by overcrowding.

	iv.	 Any dead/empty cell with X5 to X6 live neighbors 
becomes live cell as by reproduction (division).

	 v.	 Any motile cell moves randomly to another empty 
space in time.

	vi.	 Any motile cell that cannot move becomes immo-
tile cell on the next generation.

where for Conway’s game of life, X1 = 2, X2 = 2, X3 = 3, 
X4 = 3, X5 = 3, X6 = 3. Here we will fit X1 to X6 using 
genetic algorithm with the experimental growth numbers 
in Fig. 1. Note that we have introduced additional rules 5 
and 6 to consider movement of single cells in time, since 
planktonic single P. aeruginosa contain polar flagellum 
which allows them to be motile.  We also introduced a 
new parameter for the percentage of motile cells.

Results
Figure  2a–c shows the simulations of our CA model 
fitted to P. aeruginosa growth in Fig.  1. Basically, we 
were required to fit X1 to X6 separately for the WT and 
WT + AZM condition. We performed hundreds of simu-
lations, using the aid of genetic algorithm to fit the data 
[15]. Notably, the model parameters remained the same 
as  Conway’s game of life. However,  the main difference 
between the 2 models pointed to only one key parame-
ter: the percentage of moving or motile cells (Additional 
file 1: Table S1). In other words, according to our simula-
tions, cell movement is repressed by the antibiotic AZM 
resulting in slower growth rates.

We also simulated the final outcome for 30 independ-
ent  simulations, to check the effect of variability due to 
random orientation of initial cell distributions. Figure 2D 
shows the random positioning  of cells on average sup-
ports the overall experiments, and the final cell numbers 
do not show any significant variation between the runs.

Using the WT and WT + AZM fitted models, we sub-
sequently simulated the longer term effect on the cell 
numbers. Notably, after 60 time steps, both model con-
verges to the same cell numbers (Fig.  3a). This result is 
reminiscent of the growth curves shown by another work 
by Häussler et  al. [16], who used the same protocol as 
Gillis and Iglewski [6].

Next, we investigated, from the rules, which one is 
key for suppressing the resurgence of cell proliferation 
and biofilm formation. After several considerations, we 
found that rule 4 parameters are crucial for suppress-
ing cell proliferation (Fig. 3b). In other words, our model 
proposes the development of drugs that would be able 
to regulate the dispersion of cells or that prevents cell 
cluttering. That is, according to rule 4, more empty cells 

between cells prevent cell to cell contact, thereby, is cru-
cial for controlling biofilm formation.

Discussion
In this paper, we have developed a discrete CA model 
to understand the spatiotemporal self-organizing pat-
terns of P. aeruginosa biofilm. The initial rules were 
taken directly from the famous Conway’s game of life 
with two additional rules included to factor single cell 
flagellar random movement. The parameters of the 
model were fitted with experimental profiles avail-
able for the biofilm growth for two conditions. As a 
result, we developed a single CA model, with only one 
parameter  (% of motile cells) separating  the WT and 
WT + AZM simulations.

Fig. 3  Simulations of spatiotemporal evolution of P. aeruginosa. a 
Longer term CA model simulations using WT (blue) and WT + AZM 
(red), b modified CA model simulations (rule 4, X5 = 5 and X6 = 6) that 
prevents biofilm formation
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Notably, our model simulations not only recapitulate 
the growth profiles of both the untreated and treated 
biofilm successfully (Figs. 1c and 2c), they also capture 
the spatial organization of the cells/biofilm over time 
(Figs.  1a, b and 2a, b). The model predictions suggest 
that adding the antibiotic agent inhibits the move-
ment of certain single planktonic P. aeruginosa which 
retards their growth. However, subsequently, the inhi-
bition succumbs due to the other rules (1 and 4) to 
form delayed biofilm. Thus, our model predictions indi-
cate that AZM, on top of regulating bacterial quorum 
sensing mechanism and metabolism, is also regulating 
the cell movement mechanisms such as those involved 
in flagellar functioning. This delays the overall biofilm 
progression.

Experimentally, although AZM is shown to suppress 
P. aeruginosa biofilm [6, 16], its mechanism of action 
still remains poorly understood. We next searched the 
literature on high-throughput transcriptomics and pro-
teomics related works on AZM treated P. aeruginosa. 
Remarkably, we found the work by Häussler et al. [16] 
supporting our model prediction. In their work, they 
have shown that the genes and proteins related to fla-
gellar are indeed down-regulated using the same dos-
age of AZM treatment compared with WT.

Moving further, to find a condition that would effec-
tively suppress P. aeruginosa biofilm formation, we 
searched for the most appropriate rules and their 
parameter values. The best model suggests that rule 4 
should have parameter values X5 = 5 and X6 = 6, which 
will prevent biofilm formation and keep the cell num-
bers almost unchanged throughout time (Fig.  3b). It 
will be interesting and crucial to identify the biologi-
cal target that will regulate rule 4 by preventing cell to 
cell contact. Trying adhesins inhibitors with AZM may 
be a viable next option. Another option is to check the 
application of biofilm quorum-sensing regulators, such 
as catechin. Although previous works have shown their 
positive effect in biofilm regulation, their actual mecha-
nism on the cell to cell contact remains elusive [17, 18].

In summary, our work here highlights the need for 
interdisciplinary research to understand and combat 
the complexities of living systems, such as controlling 
the pathogenic microorganisms that endanger the lives 
of infected people.

Limitations
Further work is required to experimentally validate our 
final model prediction, such as trying the co-applica-
tion of adhesins inhibitors or catechin with AZM. Also, 
the model should be expanded to include the simula-
tion and testing of multi-species quorum-sensing 

bacteria evolution, which is usually a major concern in 
chronic infection.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1310​4-019-4795-x.

Additional file 1: Table S1. CA model parameters for fitting WT and 
WT+AZM.

Abbreviations
CA: cellular automata; AZM: azithromycin; WT: wildtype; FAB: fastidious anaer-
obe broth; KNO3: potassium nitrate; MIC: minimum inhibitory concentration.

Acknowledgements
N. Lindley and Y. Kanagasundram for discussion.

Authors’ contributions
WD constructed the model and performed simulations. KS conceived the 
idea and rules, supervised the work and wrote the paper. All authors read and 
approved the final manuscript.

Funding
The authors thank BioTrans for funding (IAF-PP) the modeling work. The 
funder played no role in study design; collection, analysis, and interpreta-
tion of data; writing of the report; or in the decision to submit the article for 
publication.

Availability of data and materials
The CA model with user instructions is found on URL: https​://githu​b.com/Eclio​
n/cell-autom​ata.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 École nationale d’ingénieurs de Brest, Brest, France. 2 Biotransformation 
Innovation Platform (BioTrans), Agency for Science, Technology and Research 
A*STAR​, Biopolis, Singapore. 

Received: 17 October 2019   Accepted: 11 November 2019

References
	1.	 Flemming HC, et al. Biofilms: an emergent form of bacterial life. Nat Rev 

Microbiol. 2016;14:563–75.
	2.	 Piras V, Chiow A, Selvarajoo K. Long-range order and short-range disorder 

in Saccharomyces cerevisiae biofilm. Eng Biol. 2019;3:12–9.
	3.	 Worthington RJ, Richards JJ, Melander C. Small molecule control of bacte-

rial biofilms. Org Biomol Chem. 2012;10:7457–74.
	4.	 Ahmed MN, Porse A, Sommer MOA, Høiby N, Ciofu O. Evolution of 

antibiotic resistance in biofilm and planktonic Pseudomonas aeruginosa 
populations exposed to subinhibitory levels of ciprofloxacin. Antimicrob 
Agents Chemother. 2018;62:e00320-18.

	5.	 de Jong PA, et al. Progressive damage on high resolution computed 
tomography despite stable lung function in cystic fibrosis. Eur Respir J. 
2004;23:93–7.

	6.	 Gillis RJ, Iglewski BH. Azithromycin retards Pseudomonas aeruginosa 
biofilm formation. J Clin Microbiol. 2004;42:5842–5.

https://doi.org/10.1186/s13104-019-4795-x
https://doi.org/10.1186/s13104-019-4795-x
https://github.com/Eclion/cell-automata
https://github.com/Eclion/cell-automata


Page 6 of 6Deveaux and Selvarajoo ﻿BMC Res Notes          (2019) 12:763 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	7.	 Maini PK, Woolley TE, Baker RE, Gaffney EA, Lee SS. Turing’s model for 
biological pattern formation and the robustness problem. Int Focus. 
2012;2:487–96.

	8.	 Selvarajoo K. Complexity of biochemical and genetic responses reduced 
using simple theoretical models. Methods Mol Biol. 2018;1702:171–201.

	9.	 Wolfram S. Statistical mechanics of cellular automata. Rev Mod Phys. 
1983;55:601–44.

	10.	 Skoneczny S. Cellular automata-based modelling and simulation 
of biofilm structure on multi-core computers. Water Sci Technol. 
2015;72:2071–81.

	11.	 Pizarro GE, García C, Moreno R, Sepúlveda ME. Two-dimensional cel-
lular automaton model for mixed-culture biofilm. Water Sci Technol. 
2004;49:193–8.

	12.	 De Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH. Quorum-sensing genes 
in Pseudomonas aeruginosa biofilms: their role and expression patterns. 
Appl Environ Microbiol. 2001;67:1865–73.

	13.	 Heydorn A, et al. Experimental reproducibility in flow-chamber biofilms. 
Microbiology. 2000;146:2409–15.

	14.	 Gardner M. Mathematical games: the fantastic combinations of John 
Conway’s new solitaire game “life”. Sci Am. 1970;223:120–3.

	15.	 Deveaux W, Hayashi K, Selvarajoo K. Defining rules for cancer cell prolif-
eration in TRAIL stimulation. NPJ Syst Biol Appl. 2019;5:5.

	16.	 Nalca Y, et al. Quorum-sensing antagonistic activities of azithromycin in 
Pseudomonas aeruginosa PAO1: a global approach. Antimicrob Agents 
Chemother. 2006;50:1680–8.

	17.	 Vandeputte OM, et al. Identification of catechin as one of the flavonoids 
from Combretum albiflorum bark extract that reduces the production of 
quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa 
PAO1. Appl Environ Microbiol. 2010;76:243–53.

	18.	 Matsunaga T, et al. The inhibitory effects of catechins on biofilm forma-
tion by the periodontopathogenic bacterium, Eikenella corrodens. Biosci 
Biotechnol Biochem. 2010;74:2445–50.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Searching for simple rules in Pseudomonas aeruginosa biofilm formation
	Abstract 
	Objective: 
	Results: 

	Introduction
	Main text
	Data
	Methods
	Spatial temporal cellular automata
	Cellular automata model
	Cellular automata model rules

	Results
	Discussion

	Limitations
	Acknowledgements
	References




