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Abstract 

Objectives:  The data presented here is part of a study that was aimed at characterizing the molecular mechanisms 
of polyunsaturated fatty acid metabolism by CYP2J2, the main cytochrome P450 enzyme active in the human car‑
diovasculature. This part comprises the molecular dynamics simulations of the binding of three eicosanoid substrates 
to wild type and mutant forms of the enzyme. These simulations were carried out with the aim of dissecting the 
importance of individual residues in the active site and the roles they might play in dictating the binding and catalytic 
specificity exhibited by CYP2J2.

Data description:  The data comprise: (a) a new homology model of CYP2J2, (b) a number of predicted low-energy 
complexes of CYP2J2 with arachidonic acid, docosahexaenoic acid and eicosapentaenoic acid, produced with 
molecular docking and (c) a series of molecular dynamics simulations of the wild type and four mutants interacting 
with arachidonic acid as well as simulations of the wild type interacting with the two other eicosanoid ligands. The 
simulations may be helpful in identifying the determinants of substrate specificity of this enzyme and in unraveling 
the role of individual mutations on its function. They may also help guide the generation of mutants with altered 
substrate preferences.
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Objective
The polyunsaturated fatty acids (PUFAs) arachidonic 
acid (AA), docosahexaenoic acid (DHA) and eicosap-
entaenoic acid (EPA) are oxidised by cytochrome P450 
(CYP) enzymes to produce metabolically active products 
that play significant roles in inflammation pathways [1, 
2]. Due to the absence of a crystal structure of the main 
such enzyme in the human cardiovasculature (CYP2J2), 
the precise mechanism by which it metabolises PUFAs 
into specific stereo- and regio-epoxyisomers is not fully 
understood. Consequently, the effect of mutations in the 
protein sequence arising from non-synonymous single 

nucleotide polymorphisms found in the population can-
not be predicted, hindering our ability to link genomic 
information to dysregulation of inflammatory responses 
and thus successful prognoses of cardiovascular health. 
In this project, we aimed to understand binding of PUFAs 
in the active site of CYP2J2 using computational methods 
and leverage this information to investigate the residues 
essential for ligand positioning and metabolism. In previ-
ous work, our groups investigated the interaction of AA 
with human CYP2J2 and revealed Arg117 as a key player 
in the recognition of this substrate [3], although these 
simulations were relatively short (50  ns). Simulations 
from other studies have come to diverse conclusions 
about the role of individual residues in the active site [4–
6]. Here, we tried to investigate further using much more 
extensive simulations of both wild type and mutant forms 
of the enzyme. These new simulations confirmed the 
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importance of Arg117 but in addition suggested Arg111 
as a residue necessary for epoxidation and pointed to 
the role of two more arginine residues in the active site 
that allow some redundancy in substrate tethering and 
contribute to the flexibility of the catalytic capabilities of 
the system. Expression trials in HEK293T cells to pro-
duce CYP2J2 and its mutants were unsuccessful so the 

computationally derived hypotheses could not be vali-
dated in the lifetime of this project.

Data description
The data presented here comprise the results of homol-
ogy modeling of the human wild type CYP2J2 and gen-
eration of models for a series of mutants [7]; molecular 

Table 1  Overview of data files/data sets

Label Name of data file/data set File types (file extension) Data repository and identifier (DOI 
or accession number)

Data set 1: Homology modelling, 
molecular docking and molecular 
dynamics simulations of wild type 
and mutant human CYP2J2 with 
three polyunsaturated fatty acids

Abelak_etal_Methods.pdf
C2J2_min3_mod_noH.pdb
create_sim4_repeats.sh
docking_wildtype_C2J2.zip

PDF document
PDB file (.pdb)
Shell script (.sh)
Zipped file of 9 pdb files (.zip)

Zenodo
https​://doi.org/10.5281/zenod​o.34658​

84

Data set 2: Molecular dynamics 
simulations of the interaction of wild 
type human CYP2J2 with arachi‑
donic acid

MD_wt_CYP2J2_AA_StateX_repeatY.
zip

(X = pose number, 1 ≤ X ≤ 6; 
Y = repeat number, 1 ≤ Y ≤ 4)

Zipped files (.zip) Zenodo
Poses 1 and 2
https​://doi.org/10.5281/zenod​o.34655​

90
Poses 3 and 4
https​://doi.org/10.5281/zenod​o.34666​

92
Poses 5 and 6
https​://doi.org/10.5281/zenod​o.34738​

86

Data set 3: Molecular dynamics 
simulations of the interaction of 
wild type human CYP2J2 with DHA 
(POSES 1–4)

MD_wt_CYP2J2_DHA_StateX_
repeatY.zip

(X = pose number, 1 ≤ X ≤ 4; 
Y = repeat number, 1 ≤ Y ≤ 3)

Zipped files (.zip) Zenodo
https​://doi.org/10.5281/zenod​o.34739​

09

Data set 4: Molecular dynamics 
simulations of the interaction of 
wild type human CYP2J2 with EPA 
(POSES 1–4)

MD_wt_CYP2J2_EPA_StateX_repeatY.
zip

(X = pose number, 1 ≤ X ≤ 4; 
Y = repeat number, 1 ≤ Y ≤ 3)

Zipped files (.zip) Zenodo
https​://doi.org/10.5281/zenod​o.34739​

27

Data set 5: Molecular dynamics 
simulations of the interaction of 
mutant human CYP2J2 (R111A) with 
arachidonic acid

MD_mutR111A_CYP2J2_AA_Sta‑
teX_repeatY.zip

(X = pose number, 1 ≤ X ≤ 6; 
Y = repeat number, 1 ≤ Y ≤ 3)

Zipped files (.zip) Zenodo
Poses 1–3
https​://doi.org/10.5281/zenod​o.34835​

94
Poses 4-6:
https​://doi.org/10.5281/zenod​o.34839​

66

Data set 6: Molecular dynamics 
simulations of the interaction of 
mutant human CYP2J2 (R117A) with 
arachidonic acid

MD_mutR117A_CYP2J2_AA_Sta‑
teX_repeatY.zip

(X = pose number, 1 ≤ X ≤ 6; 
Y = repeat number, 1 ≤ Y ≤ 3)

Zipped files (.zip), Zenodo
Poses 1–4
https​://doi.org/10.5281/zenod​o.34829​

43
Poses 5-6:
https​://doi.org/10.5281/zenod​o.34834​

93

Data set 7: Molecular dynamics simu‑
lations of the interaction of double 
mutant human CYP2J2 (R111A, 
R117A) with arachidonic acid

MD_mutR111A_R117A_CYP2J2_AA_
StateX_repeatY.zip

(X = pose number, 1 ≤ X ≤ 6; 
Y = repeat number, 1 ≤ Y ≤ 3)

Zipped files (.zip) Zenodo
Poses 1–3
https​://doi.org/10.5281/zenod​o.34840​

29
Poses 4-6:
https​://doi.org/10.5281/zenod​o.34841​

24

Data set 8: Molecular dynamics 
simulations of the interaction of 
quadruple mutant human CYP2J2 
(R111A, R117A, R382A, R446A) with 
arachidonic acid

MD_quadmut_CYP2J2_AA_StateX_
repeatY.zip

(X = pose number, 1 ≤ X ≤ 6; 
Y = repeat number, 1 ≤ Y ≤ 3)

Zipped files (.zip) Zenodo
Poses 1–3
https​://doi.org/10.5281/zenod​o.34844​

37
Poses 4-6:
https​://doi.org/10.5281/zenod​o.34844​

48

https://doi.org/10.5281/zenodo.3465884
https://doi.org/10.5281/zenodo.3465884
https://doi.org/10.5281/zenodo.3465590
https://doi.org/10.5281/zenodo.3465590
https://doi.org/10.5281/zenodo.3466692
https://doi.org/10.5281/zenodo.3466692
https://doi.org/10.5281/zenodo.3473886
https://doi.org/10.5281/zenodo.3473886
https://doi.org/10.5281/zenodo.3473909
https://doi.org/10.5281/zenodo.3473909
https://doi.org/10.5281/zenodo.3473927
https://doi.org/10.5281/zenodo.3473927
https://doi.org/10.5281/zenodo.3483594
https://doi.org/10.5281/zenodo.3483594
https://doi.org/10.5281/zenodo.3483966
https://doi.org/10.5281/zenodo.3483966
https://doi.org/10.5281/zenodo.3482943
https://doi.org/10.5281/zenodo.3482943
https://doi.org/10.5281/zenodo.3483493
https://doi.org/10.5281/zenodo.3483493
https://doi.org/10.5281/zenodo.3484029
https://doi.org/10.5281/zenodo.3484029
https://doi.org/10.5281/zenodo.3484124
https://doi.org/10.5281/zenodo.3484124
https://doi.org/10.5281/zenodo.3484437
https://doi.org/10.5281/zenodo.3484437
https://doi.org/10.5281/zenodo.3484448
https://doi.org/10.5281/zenodo.3484448
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docking of three eicosanoid ligands (AA, DHA and EPA) 
to wild type CYP2J2 [7]; finally, a series of molecu-
lar dynamics simulations of the wild type and mutant 
enzyme with the three ligands [8–20]. Below is a brief 
description of each part of the data. More details are 
available in the Methods document on the top Zenodo 
repository [7].

Homology model of CYP2J2
The homology model [7] is based on the UniProt [21] 
protein sequence with UID P51589. A model of the 
sequence with the N-terminal transmembrane domain 
(residues 1–43) trimmed was built using MODELLER 
version 9.14 [22], using as templates the PDB structures: 
1SUO [23], 2P85 [24], 3EBS [25] and 1Z10 [26]. A haem 
molecule was incorporated into the model building using 
the HETATM records from PDB structure 1SUO.

Structure models of mutants of CYP2J2 were produced 
using the homology model of the wild type enzyme as the 
starting point and changing residues 111, 117, 382 and 
446 from arginine to alanine. The expectation was that 
mutating these residues to a non-charged amino acid 
would have a noticeable impact on the binding of fatty 
acid substrates.

Docking of PUFAs to CYP2J2
The fatty acids arachidonic acid (AA), docosahexaenoic 
acid (DHA) and eicosapentaenoic acid (EPA) were inves-
tigated in this study. The structure of AA was obtained 
from the Zinc Dock database version 12 [27]. Structures 
for DHA and EPA were derived using the Automated 
Topology Builder version 2.2 [28]. Docking of all ligands 
to CYP2J2 models was carried out using Autodock VINA 
version 1.1.2 [29]. Five independent docking runs were 
carried out for each ligand.

Molecular dynamics simulations
MD simulations were carried out using AMBER14 [30] as 
described in the Methods document (data set 1 [7]). The 
simulations included the standard minimization, heating, 
equilibration and production phases. Six docked wild 
type CYP2J2-AA complexes were simulated in four inde-
pendent runs, each lasting 1 μs [8–10]. Simulations of the 
mutant enzymes started from the same six docked poses 
of AA but each pose was simulated in three repeats, 
each lasting 500  ns. Two single mutants were investi-
gated (Arg111Ala [13, 14], Arg117Ala [15, 16]) followed 
by a double mutant (Arg111Ala and Arg117Ala [17, 18]) 
and finally a quadruple mutant (Arg111Ala, Arg117Ala, 
Arg382Ala and Arg446Ala [19, 20]). Simulations of DHA 
[12] and EPA [11] were carried out starting from four 
docked poses, each simulation repeated three times and 
lasting 300 ns.

The simulations highlighted two residues in the active 
site (Arg111 and Arg117) that appear to play important 
roles in anchoring the carboxylate group of the sub-
strate. Simulations also suggested that mutating any one 
of these two residues, results in enhancing the role of 
the other one as a hydrogen-bond donor, and that if both 
are mutated, two more arginine residues (Arg382 and 
Arg446) can partially make up for the missing charged 
groups in the active site.

Limitations
As with all computational studies, the data here should 
be interpreted with care. The starting CYP2J2 struc-
ture used in these simulations is a homology model, i.e. 
a structure built in silico using information from related 
proteins whose structures have been deposited in the 
PDB. Although we have built the model using an align-
ment of multiple, carefully selected structures, it is possi-
ble that inaccuracies in the initial structure have affected 
the final simulations. Our molecular dynamics simula-
tions (ranging from 900 ns to 4 μs) are, to the best of our 
knowledge, the longest carried out on human CYP2J2 
and, in addition, multiple repeats using the same starting 
docked pose of the ligand were used to assess the robust-
ness of observations to differences introduced by the ran-
dom nature of the algorithm. Despite the length of these 
simulations and the evidence pointing to reasonable con-
vergence in energy terms, simulations appeared to sam-
ple different conformations of the system, even when the 
same starting pose was used (in different repeats). These 
MD runs thus point towards a very flexible system that is 
better described as an ensemble of possible states, whose 
probability is affected by the substrate nature or muta-
tions in the active site. Longer simulation times would 
have been useful in revealing whether convergence of 
the system to a few distinct conformations is possible, 
given enough simulation time. The haem molecule plays 
an important role in these simulations. Haem was mod-
eled here in its penta-coordinated high-spin ferric form 
but the alternative highly reactive iron-oxygen species 
complex should be considered too. Finally, modeling 
a restricted part of this system around the haem mole-
cule using a quantum mechanical (QM) model would be 
advisable. A joint QM/MM system could be setup that 
would offer a more realistic representation of how the 
intermediate complex between haem and substrate is 
formed.

Abbreviations
AA: arachidonic acid; CYP: cytochrome P450; DHA: docosahexaenoic acid; EPA: 
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mechanical.
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