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Abstract 

Objective:  The Pseudomonas koreensis group bacteria are usually found in soil and are associated with plants. Cur‑
rently they are poorly described. Here we report on the whole genome sequence of a bacterial isolate from a patient 
with bronchiectasis that was first identified as P. koreensis, and on its position in the P. koreensis group.

Results:  Strain 16-537536 was isolated from a patient with bronchiectasis from Spain and initially identified by 
MALDI-TOF as P. koreensis, a member of the Pseudomonas fluorescens complex. However, the average nucleotide 
identity analysis (ANIb) and whole genome alignments of the draft genome sequence of this strain showed it to 
be a member of the P. koreensis group of the P. fluorescens complex, but belonging to an undescribed species. In 
addition, based on ANIb analysis, the P. koreensis group contains several other unnamed species. Several genes for 
putative virulence factors were identified. The only antibiotic resistance gene present in strain 16-537536 was a class C 
β-lactamase. The correct identification of bacterial species from patients is of utmost importance in order to under‑
stand their pathogenesis and to track the potential spread of pathogens between patients. Whole genome sequence 
data should be included for the description of new species.
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Introduction
The Pseudomonas koreensis group is classified within the 
Pseudomonas fluorescens complex and consist of several 
species, including Pseudomonas koreensis [1, 2]. P. fluo-
rescens complex isolates have been recovered from many 
environmental sources, and are frequently associated 
with plants and soils [3]. P. koreensis was first isolated 

from Korean agricultural soils. Subsequently, it has 
been isolated from rhizospheres, other agricultural soils 
[4, 5], and from yak milk [6]. It has also been found as a 
pathogen in freshwater fish [7]. The bacterium has been 
reported to produce antimicrobial and antifungal com-
pounds [8–10]. Here we report the sequence of P. koreen-
sis group strain 16-537536 from a bronchiectasis patient 
and on its relationship to other strains of this group for 
which whole genome sequence data are available.
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Main text
Methods
Strain 16-537536 was a respiratory isolate from a Span-
ish patient (50–70  years old) with Karthagener syn-
drome and bi-basal bronchiectasis in October 2015. It 
was cultured from a sputum sample by inoculation on 
5% sheep blood, chocolate and MacConkey agar plates. 
Leukocytes and Gram-negative rods were observed in 
the Gram-stain of the sputum sample. The agar plates 
were incubated at 37 °C in aerobic and 5% CO2 atmos-
phere conditions; and significant bacterial growth was 
detected on all the plates after 24 h. Identification and 
susceptibility testing was performed with the MicroS-
can Walkaway system (Beckman Coulter), which iden-
tified the isolate as Pseudomonas spp. The isolate was 
also analyzed by MALDI-TOF (Bruker, Germany). 
Briefly, the isolate was spotted in duplo on a steel tar-
get and a α-cyano-4-hydroxy-cinnamic acid matrix was 
applied. The spectra which were obtained were com-
pared to those in the Bruker library. Bacterial DNA was 
isolated with the QIAcube DNeasy Blood and Tissue 
Kit using the bacterial or yeast DNA with enzymatic 
lysis protocol (Qiagen, Germany) after pretreatment 
with 3  µg/ml lysozyme for 30  min at 37  °C. A DNA 
library was prepared using the Illumina Nextera XT kit 
with the corresponding protocol (Illumina, CA) and 
subsequently sequenced on an Illumina NextSeq plat-
form using the 2 × 150 bp sequencing kit.

Contigs were assembled with SPAdes genome assem-
bler v.3.6.2. Contigs longer than 500  bp with at least 
tenfold coverage were analyzed further.

The relationship to closely related strains was esti-
mated by establishing an average nucleotide identity 
score based on BLAST (ANIb) [11, 12], using the whole 
genome sequences of the P. koreensis group strains 
as previously defined by Garrido-Sanz et  al. [13]. In 
addition, we included the type strain (LMG 21318), 
two other strains identified as P. koreensis (CRS05-R5 
and D26) (NCBI GCF_900101414.1, CP015852 and 
CP014947.1, respectively), and Pseudomonas baetica 
(NCBI PKLC01000000) [14].

The assembled contigs were separately annotated 
using RAST [15] and Prokka [16]. Further analysis for 
the presence of resistance genes was performed with 
ResFinder 3.1 of the Center for Genomic Epidemiology 
(DTU, Denmark) [17].

Results
The assembly resulted in 348 contigs with a total length 
of 6,613,537 bp. The average coverage was 52-fold and 
the GC-content was 59.9%.

Primary identification was performed by MALDI-
TOF. The top 5 results with their score for the first 
spot were: P. koreensis (1.99); P. koreensis (1.89); Pseu-
domonas jessenii (1.85); Pseudomonas azotoformans 
(1.82); Pseudomonas vancouverensis (1.8) and for the 
second spot: P. koreensis (2.03) P. jessenii (1.89); Pseu-
domonas corrugate (1.88); P. koreensis (1.84); P. van-
couverensis (1.82). The single score above 2.00 led to a 
presumptive identification of the isolate as P. koreensis. 
However, whole genome alignments suggested that P. 
koreensis 16-537536 might belong to a different spe-
cies. To verify the species identification, an ANIb was 
performed, using the whole genome sequences of the P. 
koreensis group strains defined by Garrido-Sanz et  al. 
[13]. In addition we included the type strain (LMG 
21318) and the sequence data of four other strains iden-
tified as P. koreensis and available at NCBI (CRS05-R5, 
P2, Ab36, and D26). When two isolates have an ANIb 
identity score below 95–96%, they are generally consid-
ered to be separate species [11]. Applying a conserva-
tive cut-off of 95%, the P. koreensis group can be divided 
into 21 different species (Fig.  1). The ANIb confirms 
that strain 16-537536 and the P. koreensis type strain 
belong to different, albeit very closely related species. 
Strain 16-537536 clusters with two strains labeled P. 
fluorescens AU5633 and Pseudomonas spp. W15FEB9B. 
The strain identified as P. koreensis CRS05-R5 clusters 
with the type strain, whereas D26 strain clusters with 
four other strains, including one that was identified as 
Pseudomonas moraviensis. Strain Ab36 clusters with P. 
fluorescens SF39a. Strain P2 is unrelated to any of the 
strains tested in the ANIb, with the lowest score when 
compared to any of the other strains (< 80.3%).

Gene annotation using RAST identified 6194 protein 
coding sequences and 78 sequences encoding RNAs. An 
intrinsic class C β-lactamase was identified, but neither 
RAST nor ResFinder yielded any additional (acquired) 
antibiotic resistance genes. Based on RAST annotation, 
there was no evidence for plasmids or transposons. How-
ever, alignment against plasmid 4 of P. koreensis strain 
P19E3 (GenBank Acc. No CP027481) showed that 69 kb 
of DNA encoding putative heavy metal/copper resistance 
related sequences were also present on the approximately 
283  kb P19E3 plasmid. Virulence factors could not be 
identified using RAST. Annotation with Prokka yielded 
similar results. Further analysis using BLAST against 
GenBank identified several putative virulence factors. 
Although P. koreensis group strains are usually not patho-
genic in humans, they have been reported as pathogens 
in freshwater fish [6]. Based on RAST, several potential 
virulence factors were encoded: enzymes involved in 
alginate biosynthesis, type II and type VI secretion sys-
tems, toxins, pyocins, two filamentous hemagglutinins, 
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urease, fimbriae, a thermostable hemolysin, a flagellum, a 
microcin, and a bacteriocin.

Discussion
Strain 16-537536 has a comparable genome size to other 
P. koreensis strains: 6,622,028  bp for CI12, 5,991,224  bp 
for CRS05-R5, and 6,444,290 bp for the P19E3 chromo-
some and 1,053,904 bp for its four plasmids ([4, 18]; Gen-
Bank Acc. No. CP027477-CP027481).

The results from the ANIb analysis are comparable 
to those described by Garrido-Sanz et  al. [13], with the 

exception of the strains Pseudomonas spp. RIT-PI-o and 
P. fluorescens MEP34, which clustered separately in the 
study of Garrido-Sanz et al. [13]. The reason for this dis-
crepancy is not clear, but differences between isolate sets 
may play a role. The ANIb confirms that strain 16-537536 
and the P. koreensis type strain belong to different, albeit 
very closely related species.

Our difficulties with identifying strain 16-537536 to the 
species level, despite having its whole genome sequence 
available, illustrates the needs for improvement of the the 
P. koreensis group taxonomy. In addition, we found three 

Fig. 1  Heatmap of the ANIb of isolates belonging to the P. koreensis group of the P. fluorescens complex. The identity increases form 85 to 86% (light 
lavender) to 100% (dark blue). Type strains are indicated by [T] behind the species name. For details of the percentages see Additional file 1: Figure 
S1
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more strains, currently identified as P. koreensis, which 
potentially represent several novel species. Although 
the majority of the strains used in our analysis are plant-
associated, two isolates were obtained from cystic fibro-
sis patients and our strain was retrieved from a patient 
with bronchiectasis; correct species assignment will aid 
in understanding the epidemiology and pathogenesis of 
Pseudomonas spp. in these diseases. The availability of 
whole genome sequences of the type strains of all species 
within the P. fluorescens complex would greatly contrib-
ute to this objective, as it would allow correct assignment 
of already sequenced strains and would support the des-
ignation of novel species.

The presence of hemolysin has been reported previ-
ously for Pseudomonas aeruginosa and its activity is con-
sidered an important virulence factor in infection [19].

Filamentous hemagglutinin has been shown to be an 
iron-reponsive virulence factor in the P. fluorescens strain 
TSS, which is pathogenic for fish [20]. A mutant of P. 
fluorescens TSS, in which filamentous hemagglutinin was 
inactivated, showed less biofilm production and extra-
cellular matrix, had no apparent flagella and motility, 
was defective in attachment to host cells, showed no self-
aggregation, exhibited less ability for hemagglutination 
and had a reduced survival in serum. In vivo experiments 
in fish showed attenuation of dissemination in tissue by 
the mutant strain, and reduced host mortality.

Urease has been implicated as a virulence factor dur-
ing human respiratory tract infection by Haemophilus 
influenzae [21]; the enzyme enhances viability in an acid 
environment. The urease of strain 16-537536 may play 
a similar role, especially considering that this strain was 
isolated from the sputum of a bronchiectasis patient 
with a lung infection. Based on similarity with proteins 
in Pseudomonas species, strain 16-537536 encodes four 
potential toxins, one of which was annotated previously 
as insecticidal toxin complex TcaB2. Additional infor-
mation for these toxins is lacking and their roles in viru-
lence remains unknown [GenBank accession numbers 
WP_108183637.1, WP_108183629.1, WP_108183629.1, 
WP_108181890.1, and WP_108183711.1].

The presence of type II and type VI secretion systems 
in strain 16-537536 may indicate that the bacterium 
expresses virulence factors which are excreted by these 
systems. The type II secretion system of P. aeruginosa is a 
general secretion pathway that secretes virulence factors, 
such as guanylate cyclase ExoA and the proteases LasA/B; 
it is also present in other pathogenic bacteria [22, 23]. 
The type VI secretion systems are used by many Gram-
negative bacteria to inject toxic effector molecules into 
eukaryotic or prokaryotic cells and have a role in elimi-
nating other bacteria that occupy the same niche. This 
has for example been shown for Salmonella typhimurium 

in an animal model [24]. Pyocins, microcins, and bacte-
riocins, which are antibacterial peptides, may also con-
tribute to this process [25]. Finally, fimbriae and flagella 
may contribute to virulence by facilitating adhesion and 
providing mobility.

Besides these putative virulence factors, additional 
virulence factors in strain 16-537536 may not been have 
been identified because annotation of the genome is not 
complete; many open reading frames were identified 
as hypothetical proteins. Furthermore, it is unknown 
whether the identified virulence factors are indeed 
expressed during human colonization and infection.

Conclusion
Strain 16-537536 is a member of the P. koreensis group 
and belongs to a novel, currently undescribed species. 
The strain encodes several putative virulence factors. It 
has an intrinsic AmpC β-lactamase, but no additional 
acquired antibiotic resistance genes.

Limitations

•	 WGS of type strain not always available.
•	 Annotation of bacterial genes incomplete.
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