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Development of microsatellite markers 
for three at risk tiger beetles Cicindela dorsalis 
dorsalis, C. d. media, and C. puritana
Aaron W. Aunins1*, Michael S. Eackles1, David C. Kazyak1, Michael R. Drummond2 and Timothy L. King1

Abstract 

Objective: Tiger beetles inhabiting sandy beaches and cliffs along the east coast of the United States are facing 
increasing habitat loss due to erosion, urbanization, and sea level rise. The northeastern beach tiger beetle Cicindela 
dorsalis dorsalis and Puritan tiger beetle Cicindela puritana are both listed as threatened under the Endangered Species 
Act of 1973, while the white beach tiger beetle Cicindela dorsalis media is not listed but has been declining. Extirpation 
of these beetles, in some cases from entire states, has isolated many populations reducing gene flow and elevating 
the risk for the loss of genetic variation. To facilitate investigations of population genetic structure, we developed 
suites of microsatellite loci for conservation genetic studies.

Results: Shotgun genomic sequencing of all species identified thousands of candidate microsatellite loci, among 
which 17 loci were optimized and verified to cross-amplify within C. d. media and C. d. dorsalis, and eight separate loci 
were optimized for C. puritana. Most loci conformed to Hardy–Weinberg equilibrium, showed no evidence of linkage 
disequilibrium or null alleles, and revealed population genetic characteristics informative for natural resource manag-
ers among the populations tested.

Keywords: Microsatellites, Cicindela dorsalis dorsalis, Cicindela dorsalis media, Cicindela puritana, Shotgun genomic 
sequencing
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Introduction
Tiger beetles of the genus Cicindela are large diurnal 
predatory insects that tend to prefer sandy habitats near 
bodies of water such as river edges, and coastal beaches 
[1]. Many species along the North American Atlantic 
coast are declining due to the destruction of adult and 
larval beach habitat through increased development and 
recreational use, erosion, and sea level rise. The feder-
ally threatened northeastern beach tiger beetle Cicindela 
dorsalis dorsalis, which once was described as occurring 
in great swarms along beaches from Martha’s Vineyard, 
Massachusetts (MA) to New Jersey (NJ), and a common 

inhabitant of coastal beaches from MA south to Virginia 
(VA) is extirpated from much of its native range (United 
States Fish and Wildlife Service (USFWS) [2]). The white 
beach tiger beetle C. d. media native range overlaps with 
C. d. dorsalis and extends from NJ south to Florida (FL). 
However, while this species is also declining, it is gener-
ally considered more abundant than C. d. dorsalis [3]. 
The Puritan tiger beetle C. puritana is federally listed as 
threatened, and historically ranged from the Chesapeake 
Bay to Connecticut (CT), but is now reduced to a few 
isolated populations in Maryland (MD) and CT. While 
other tiger beetles co-occur with C. d. media, C. d. dor-
salis, and C. puritana, these specific species are currently 
the focus of intense conservation efforts. To support their 
conservation, we developed a suite of microsatellite loci 
for population genetic research to facilitate estimation of 
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the extent of gene flow, genetic diversity, and existence of 
metapopulations.

Main text
Methods
Multiple genomic shotgun DNA libraries of single indi-
viduals and pooled conspecifics were prepared from C. 
d. media, C. d. dorsalis, and C. puritana collected from 
throughout their native range. All samples were collected 
by the USFWS and provided to the U.S. Geological Sur-
vey (USGS) Leetown Science Center as whole beetles 
preserved in 95% ethanol. DNA was extracted from the 
head of each individual beetle using the DNEasy Blood 
and Tissue Kit (Qiagen, Germantown, MD). DNA was 
quantified using a Nanodrop spectrophotometer (Ther-
moFisher Scientific, Frederick, MD), and used for con-
struction of libraries for Ion Torrent PGM sequencing. 
Sequence reads were generated from C. puritana (n = 1), 
C. d. media (n = 1), and C. d. dorsalis (n = 7) among 11 
Ion Torrent sequencing chips. An additional library was 
sequenced on a 454 Junior for n = 1 C. d. dorsalis. All 
sequencing was performed at the USGS Leetown Science 
Center, Kearneysville, WV.

All sequence reads were imported into Qiagen CLC 
Genomics Workbench (ver 6.5.1). Quality and length 
trimming were performed with the following set-
tings: ambiguous limit = 2, ambiguous trim = yes, qual-
ity limit = 0.015, minimum number of nucleotides in 
reads = 20, discard short reads = yes, remove 5′ or 3′ 
nucleotides = no. All quality trimmed C. d. media and 
C. d. dorsalis reads were concatenated into one file, and 
all quality trimmed C. puritana reads were concatenated 
into a separate file. We pooled the C. d. media and C. d. 
dorsalis samples since they are closely related subspe-
cies, and microsatellite loci from one sub-species would 
have a high chance of success for cross-amplification in 
the other. Each fasta file was screened for di-, tri-, tetra-, 
penta-, and hexanucleotide microsatellite repeat motifs 
in the program QDD [4]. Settings for QDD included 
searching for a minimum of five repeats per motif, and 
a minimum sequence length of 80. The output of QDD 
included thousands of candidate microsatellite loci and 
primers designed using the integrated PRIMER 3 code 
[5]. From the two lists of candidate microsatellite loci, 
we chose to test primers for 30 loci in C. d. media/C. d. 
dorsalis, and 31 loci in C. puritana. Dinucleotide loci 
were avoided. Each sequence with a candidate micros-
atellite was blasted against the NCBI nt database, and 
none with any match to nt had strong similarity to organ-
isms other than insects. Microsatellite loci were initially 
screened individually using M13 tailed primers [6]. Poly-
merase chain reactions were performed in 25 μl volumes, 
consisting of 10  ng of DNA, 1X PCR Buffer (Promega, 

Madison, WI), 0.25  μM of labeled forward primer, 
0.5  μM of unlabeled reverse primer, 0.1  μM of labeled 
M13, 2.0 mM  MgCl2, 0.2 mM of each dNTP, 0.25 units/μl 
Bovine Serum Albumin (New England Biolabs, Ipswich, 
MA), and 0.06 units/μl of Taq polymerase (Promega), 
using the following cycling conditions: 94 °C for 15 min, 
29 cycles of 94 °C for 1 min, 58 °C for 45 s, and 72 °C for 
45 s, 5 cycles of 94 °C for 1 min, 52 °C for 45 s, and 72 °C 
for 45 s, all followed by 72 °C for 10 min. PCR products 
for each locus were electrophoresed separately on an ABI 
3130 Genetic Analyzer (ThermoFisher Scientific) auto-
mated DNA sequencer. Alleles were called using Gen-
eMapper (ver. 4) (ThermoFisher Scientific) following the 
protocols described in King et al. [7].

The thirty C. d. media and C. d. dorsalis loci were ini-
tially tested on a sample of n = 8 C. d. dorsalis from Mar-
tha’s Vineyard, MA collected in 2013, and n = 8 from 
Cedar Island, MD collected in 2013. The thirty-one 
C. puritana loci were tested on n = 8 individuals col-
lected from Little Cove Point, MD in 2013. Based on the 
amplification characteristics and levels of polymorphism 
within these test populations, 17 loci for C. d. media/C. 
d. dorsalis and eight loci for C. puritana were chosen for 
optimization in larger population samples (Tables 1 and 
3). A multiplex PCR was designed for the C. d. dorsalis/C. 
d. media loci using the software Multiplex Manager [8], 
allowing the 17 loci to be run among four separate mul-
tiplex reactions (Table  1). Each multiplex PCR used the 
following concentration of reagents in a 15  µl reaction: 
1.6X PCR Buffer (Promega, Madison, WI), 0.08 units/µl 
Taq polymerase (Promega), 0.2 µM of each forward and 
reverse primer, 0.3  mM dNTPs, and 3.75  mM  MgCl2. 
Multiplex 1 and 3 utilized an annealing temperature of 
56  °C, whereas 2 and 4 utilized 58  °C. Thermal cycling 
conditions were as follows: 94 °C for 2 min, 34 cycles of 
94 °C for 30 s, 56/58 °C for 30 s, 72 °C for 90 s, followed 
by a final extension at 72 °C for 10 min. No multiplexed 
reactions were developed for the C. puritana microsatel-
lite loci, which were genotyped using M13 tailed primers.

Data analyses
Final testing of the microsatellite locus panel for the C. 
d. media/C. d. dorsalis loci was on population samples of 
n = 24 C. d. media from Fisherman’s Island, Virginia (FI; 
37.086 N, − 75.947 W), n = 20 C. d. dorsalis from Cedar 
Island, Maryland (CI 37.937 N, − 75.892 W), and n = 20 
C d. dorsalis from Martha’s Vineyard, MA (MV; 41.3498 
N, − 70.464 W). For C. puritana, a population of n = 20 
from Connecticut River, CT (location withheld), and 
n = 20 from Little Cove Point, MD (38.38635 N, − 76.385 
W) were sequenced. All genotype data were analyzed in 
MICRO-CHECKER (ver 2.2.3) to assess the occurrence 
of null alleles, large allele dropout, and scoring errors [9]. 
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Exact tests in GENEPOP [10] were used to determine if 
the distribution of genotypes at each locus conformed to 
Hardy–Weinberg equilibrium (HWE). Multi-locus tests 
of conformance to HWE were completed using Fisher’s 
method in Genepop. Linkage disequilibrium (LD) was 
tested for all pairs of loci using contingency tables in 
GENEPOP. All tests of HWE and LD tests in GENEPOP 
used the default Markov chain parameters. Significance 
levels for HWE and LD tests were adjusted using the 
sequential Bonferroni correction. To assess genetic diver-
sity, observed and unbiased expected heterozygosity and 
the effective number of alleles were calculated in Genalex 
ver 6.5 [11, 12]. Finally, to evaluate the extent of genetic 
differentiation among populations, we calculated pair-
wise F ′

ST
 in Genalex.

Results and discussion
Raw sequencing reads from all specimens are deposited 
in the NCBI short read archive as BioSamples under the 
NCBI BioProject PRJNA563672 for C. d. media and C. d. 
dorsalis, and BioProject PRJNA563686 for C. puritana. 
Among the 9,703,887 quality trimmed C. puritana reads 
processed by QDD, 238,322 contained putative micros-
atellites. Similarly, among the 5,569,580 quality trimmed 
C. d. media/C. d. dorsalis reads, 66,576 were identified by 
QDD as containing putative microsatellites.

Summary statistics of the genotypes collected from 17 
multiplexed loci tested in three population samples of 
C. d. dorsalis and C. d. media are presented in Table 1. 
There were no missing data. Microchecker identified 
locus Cdo15 as having potential scoring errors in addi-
tion to possible null alleles, while a few other loci were 
flagged as possibly having null alleles. There was no evi-
dence of linkage disequilibrium among locus pairs within 
or among collections. Several loci were monomorphic 
in one of the C. dorsalis dorsalis collections, precluding 
tests of HWE in Genepop for these loci. All populations 
were out of HWE based on Fisher’s method examining 

P-values across all loci. The most polymorphic locus 
was locus Cdo13 with seven alleles in C. d. media, and 
the number of alleles averaged across loci was higher in 
C. d. media at four versus approximately two in the C. d. 
dorsalis collections. The expected heterozygosity aver-
aged across loci was low and similar across the three col-
lections ranging from 0.20–0.29, and effective number of 
alleles was small reflecting the low levels of heterozygo-
sity. Pair-wise estimates of genetic differentiation ( F ′

ST
 ) 

were high and statistically significant among all collec-
tions ranging from 0.334 to 0.767 (Table 2). This suggests 
a high level of genetic differentiation, and suitability of 
these loci for characterizing population structure.

Complete genotypes were also obtained for the eight 
loci screened in two population samples of C. puritana 
(Table 3). Some loci were identified as having null alleles 
by Microchecker, but no loci were flagged as having scor-
ing errors. All loci were polymorphic in at least one pop-
ulation. The Little Cove Point collection was out of HWE, 
while Connecticut River was in HWE based on Fisher’s 
method examining all loci. Like for the C. d. dorsalis and 
C. d. media loci, some of the C. puritana loci were not 
sufficiently polymorphic for HWE testing in Genepop. 
There was no evidence of linkage disequilibrium among 
locus pairs or among collections. The most polymorphic 
locus was CpuQ2 with six alleles in the LCP collection. 
While the average number of alleles was similar across 
populations, the number of alleles at each locus was 
variable between populations with no consistent pat-
tern. Both observed and expected heterozygosity, as well 
as the effective number of alleles were similar and low 
in the two populations. Pair-wise F ′

ST
 was large at 0.789 

(P < 0.001) between the two C. puritana populations.
Overall, the results of the initial application of these 

loci to a small set of samples herein suggest that they 
will have utility for assessing population structure and 
patterns of gene flow in other populations of Cicin-
dela tiger beetles. In addition, the shotgun genomic 
sequencing approach we employed identified thou-
sands of candidate loci, allowing for the development of 
additional markers if needed.

Limitations
The number of populations and individuals exam-
ined so far is modest. Therefore, application of these 
microsatellite markers to additional populations of 
C. d. media, C. d. dorsalis, and C. puritana will reveal 
whether the levels of variation seen, such as a rela-
tively small number of alleles per locus and low levels 
of heterozygosity, are typical among populations within 
these taxa. For a locus like Cdo15 in C. d. media and 
C. d. dorsalis identified by MICROCHECKER as having 

Table 2 Matrix of  pair-wise F′
ST

 values (below diagonal) 
and  P-values (above diagonal) between  a  collection 
of  Cicindela dorsalis media, and  two collections of  C. d. 
dorsalis 

Pair-wise F ′
ST

 was calculated in the Genalex ver 6.5 software, and significance was 
assessed using 999 permutations. “MV” and “CI” refer to the Martha’s Vineyard 
and Cedar Island collections of C. dorsalis dorsalis, and “FI” to the collection of C. 
dorsalis media from Fisherman’s Island. See the Methods section of the text for 
details of these collections

MV CI FI

MV 0.000 0.001 0.001

CI 0.563 0.000 0.001

FI 0.336 0.197 0.000
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Table 3 Characteristics of eight microsatellite loci in two collections of Cicindela puritana 

Locus Primer sequences Size range Motif Locus characteristic CR n = 24 LCP n = 20

CpuQ1 F: GCG ACT TAT ATA CAG TTA GTG GTG T 218–251 AAT (13) NA 1.00 5.00

R: TGT CTA ACA ATT CTC TCG GAT TGC HO 0.00 0.65

uHE 0.00 0.71

AE 1.00 3.23

Microchecker null No No

Micorochecker scoring error No No

HWE P-value NA 0.6889

CpuQ2 F: ATA ACG GGA CAC TGT GGA CT 135–183 AAT (12) NA 4.00 6.00

R: ACA CTT TGG CAT TCA ATT CGGA HO 0.50 0.30

uHE 0.66 0.74

AE 2.81 3.57

Microchecker null Yes Yes

Micorochecker scoring error No No

HWE P-value 0.1688 0.0000

CpuQ3 F: CTT CGT ACG TCA TGA AAG TAC TTA T 196–214 ACT (12) NA 3.00 4.00

R: AAC TTC AAG CTT TCT GGA TCAGA HO 0.60 0.40

uHE 0.50 0.38

AE 1.97 1.58

Microchecker null No No

Microchecker scoring error No No

HWE P-value 1.0000 0.4148

CpuQ10 F: AAA TTA CGC GCG TGT ACT GC 124–136 ATC (11) NA 2.00 4.00

R: AAG GGC TGA TTC ACG ACA CC HO 0.05 0.50

uHE 0.05 0.56

AE 1.05 2.19

Microchecker null No No

Microchecker scoring error No No

HWE P-value NA 0.7256

CpuQ13 F: AGT TTC GCC ACA AAT CCT GC 116–140 AAT (10) NA 5.00 3.00

R: GGT AGG ACC ACC GCA GAA TC HO 0.75 0.25

uHE 0.68 0.66

AE 2.99 2.83

Microchecker null Yes Yes

Microchecker scoring error No No

HWE P-value 1.0000 0.0006

CpuQ19 F: AGC AGC CAC CTC TCT ACA CA 156–168 ACAT (9) NA 3.00 3.00

R: AGA GAT ATG TAG CCG GAA AGT AGC HO 0.20 0.15

uHE 0.41 0.44

AE 1.65 1.75

Microchecker null Yes Yes

Microchecker scoring error No No

HWE P-value 0.0053 0.0008

CpuQ23 F: TGA TAT GTG TTG ACT TGG TGT AAT G 146–162 ACTAT (8) NA 3.00 2.00

R: ACC ATA ATG CAA CTT TAT ACA TAT GCT HO 0.60 0.45

uHE 0.65 0.50

AE 2.75 1.96

Microchecker null No No

Microchecker scoring error No No

HWE P-value 0.2368 0.6748
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potential scoring errors, genotyping of more popula-
tions will help resolve whether this is truly a likely scor-
ing error, or artifact of small sample size. Also, some 
individual loci strongly deviated from HWE and in 
most cases this was due to a heterozygote deficiency, 
most likely suggesting the occurrence of null alleles, 
though multiple processes such as non-random sam-
pling can contribute to single locus departures from 
HWE [13]. Genotyping of additional populations with a 
higher sample size of individuals will help identify loci 
with consistent patterns of departure from HWE, the 
causes of which can be investigated further.
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