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Abstract 

Objective:  Although sequencing and other high-throughput data production technologies are increasingly afford-
able, data analysis and interpretation remains a significant factor in the cost of -omics studies. Despite the broad 
acceptance of findable, accessible, interoperable, and reusable (FAIR) data principles which focus on data discov-
erability and annotation, data integration remains a significant bottleneck in linking prior work in order to better 
understand novel research. Relevant and timely information discovery is difficult for increasingly multi-disciplinary 
projects when scientists cannot easily keep up with work across multiple fields. Computational tools are necessary to 
accurately describe data contents, and empower linkage to existing resources without prior knowledge of the various 
database resources.

Results:  We developed the Databio tool, accessible at https​://datab​.io/, to automate data parsing, identifier detec-
tion, and streamline common tasks to provide a point-and-click approach to data manipulation and integration in life 
sciences research and translational medicine. Databio uses fast real-time data structures and a data warehouse of 137 
million identifiers, with automated heuristics to describe data provenance without highly specialized knowledge or 
bioinformatics training.
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Introduction
Although sequencing and other high-throughput data 
production technologies are increasingly affordable, data 
analysis remains a significant factor in the cost of -omics 
studies [1]. Without improving the ability to automate 
data integration and interoperation, the cost of analysis 
will continue to impede access to precision medicine for 
underserved populations with limited resources. Many 
resources have been developed around the concept of a 
central “Data Commons”, but the path forward remains 
unclear [2], and current large data repositories are highly 
specialized and difficult to apply broadly. Despite the 
acceptance and proliferation the Findable, Accessible, 

Interoperable, and Reusable (FAIR) data principles [3], 
current data provider implementations focus on descrip-
tive metadata and keyword-oriented search applications, 
leaving the detailed gene and other -omics data inacces-
sible to computational discovery methods.

Data producers recognize the need to enable greater 
access to hosted data, but there are no well-accepted 
machine-readable means for annotating the contents of 
data sets across the biomedical landscape [4]. The lack 
of available standards and tools make it a cumbersome 
and time-consuming task to properly annotate identifier 
sources, record their provenance throughout an analyti-
cal process, and track subsequent data quality metrics. 
These challenges exist regardless of the level of research 
activity, including mammalian, marine, and agricultural 
research domains [5–7]. As a result, the majority of use-
ful scientific results remain buried in supplementary 
tables, figures, and poorly indexed data archives.
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Although manual curation efforts have led to increas-
ingly more data becoming available in data portals and 
publication annotations, these efforts require specialized 
knowledge around biomedical resources. Even seemingly 
trivial tasks are burdensome, such as those required for 
secondary analysis of a gene list in a supplementary table. 
One must be able to identify obscure identifiers such as 
‘ENSG00000168653’, identify tools or mapping data that 
support it, and translate into symbols (e.g. ‘NDUFS5’) 
or identifers (Entrez Gene ID 4725, or RefSeq Acces-
sion NM_004552.3, etc) useful for their own analysis 
methods. Using these resources necessitates experience 
with the extract-transform-load (ETL) process, and the 
resource knowledge and technical expertise has little to 
do with the science itself.

These challenges represent an increasing burden on 
data producers, which is deferred to data consumers who 
are faced with the need to integrate loosely described 
high-throughput experiments into novel studies [8]. 
Because data consumers only need these analytical skills 
occasionally, they are more prone to implementation 
errors and struggle to fully integrate complex data rela-
tionships [9, 10]. Thus there is a need to simplify and 
automate the discovery and retrieval process.

Main text
We present Databio, a novel framework for automat-
ing the extraction, annotation, and integration of gene-
oriented data sets. Databio automates data parsing and 
identifier detection, and streamlines many common tasks 
to provide a point-and-click approach to data manipula-
tion and integration across a broad spectrum of applica-
tions in life sciences research and translational medicine. 
This ability to quickly and accurately streamline complex 
tasks will enable faster and better analysis of -omics data.

Implementation and available data
Databio is implemented as a web-based data portal 
(https​://datab​.io) that allows users to interact with the 
embedded tools using an interactive web browser-based 
interface.

User data uploads are first handled via an automatic 
detection framework that determines the source data 
format (see top Fig. 1). The current implementation sup-
ports Tab-separated values (TSV), Comma-separated 
values (CSV), and Excel 2007+ spreadsheets (XLSX). 
Records (rows) and fields (columns) within these docu-
ments are exposed to the rest of the application through a 
modular interface allowing for support for more data for-
mats in future software updates. Heuristic techniques are 
applied to the parsed data to remove headers and deter-
mine field labels, allowing for a more descriptive display 
interface (see Fig. 1).

Once fields are parsed, values are aggregated together 
and searched against our warehouse of multiple gene 
identifier data sources. Our current snapshot contains 
over 137 million unique gene, transcript, and protein 
identifiers and 92 million unique mapping pairs (Table 1). 
Despite the extreme scale of determining identifier 
source, this classification can be completed accurately 
in real-time (less than 1 s) using Bloom filters for fast 
approximate matching [11]. The top hits for each field are 
collected (along with sample values) and returned to the 
web interface so that users can verify the accuracy of the 
predicted identifier type.

In addition to the classification index representation, 
the Databio database also contains mappings that allow 
supported identifiers to be translated into other identifier 
types. Although this common task has been supported by 
other tools such as David, Uniprot, and BioMart [12–14], 
these tools require manual data manipulation, special-
ized knowledge of identifier sources, and cannot replace 
identifiers within the context of the original data file [15]. 
Databio is able to translate identifiers in-place, removing 
multiple opportunities for error and keeping the data in 
context. These changes are applied to the existing data 
schema and exported to a CSV-format data set that can 
be readily imported into other tools for subsequent anal-
ysis (see bottom of Fig. 1).

Further easing the burden of data manipulation on the 
user, Databio is able to track important data quality issues 
such as missing identifiers and ambiguous mappings. The 
Databio warehouse maintains a record of publication 
and citation info for each identifier source, the last fetch 
and access dates, and analysis logs describing processing 
steps and data quality metrics. Using this information, 
Databio can establish that necessary metadata for publi-
cation, distribution, and reuse is present and accurately 
tracked. This ensures that data consumers know the state 
of a data set including access dates, citations, and rel-
evant usage limitations.

Usage
For example, a study identified 634 genes associated 
with Type 2 Diabetes Genome-Wide Association Study 
loci [16], and provided the results in a Supplemen-
tary Table (see top, Fig.  1). We want to look for rela-
tionships between the RefSeq Transcript sequences 
of the genes and the listed loci. However, searching for 
‘ENSG00000168653’ in RefSeq currently yields no results, 
and the gene Symbol ‘NDUFS5’ returns 19 Human 
results. One must translate the gene identifiers into more 
specific RefSeq Transcript IDs.

Upon visiting the Databio site, the user is able to upload 
this Excel file (or any other TSV, CSV or XLSX data 
file) even though it does not fit a pre-determined field 
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layout. Column names (fields) are automatically parsed 
and identified for selection on the second page (see top, 
Fig.  1). Fields with high-quality automated classification 
are marked with a circle in the top right corner to indi-
cate a high correspondence to a known Databio identifier 
source (For example, the blue box “geneId (GRCh37.66)” 
in Fig. 1). The user is then able to click on the field name 
that they want to remap. The exact match rate, as well as 
the percent coverage of the corresponding source data-
set, is shown to the user under the ‘Source Identifiers’ 
header on the left.

We can see that for this example, even though the file 
did not explicitly mention the source of gene identifiers, 
Databio easily determined them to be Ensembl Gene 
IDs. For other data sets, if there is more ambiguity to 

Fig. 1  Databio web interface workflow showing data upload (including Excel formatting, headers, and merged fields). Point-and-click field 
mapping allows selection of source and replacement gene identifiers. Results are then exported with new identifiers. Statistics, bibliography, and 
provenance files are included in download archive but not shown

Table 1  Gene identifier sources loaded into  Databio 
as of 2019-09-12

Name Subsets Total References

NCBI Entrez Gene 39 25,295,958 [17]

RefSeq Transcripts 1 2,211,841 [18]

RefSeq Proteins 1 40,574,328 [18]

Ensembl Gene 207 5,442,203 [19]

Ensembl Transcripts 207 9,000,822 [19]

Ensembl Proteins 207 6,923,465 [19]

KEGG Genes 6128 29,541,384 [20]

UniprotKB/Swiss-Prot 1 18,493,595 [13]

HGNC Gene IDs 1 42,050 [21]

HGNC Symbol 1 42,050 [21]

HGNC Gene Names 1 42,050 [21]

OMIM Genes 1 16,197 [22]
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the identifiers (e.g. integers), the user can use the drop-
down on the left to see the other matched identifiers 
sources and find the most appropriate choice. The user 
can then choose the desired identifier type to map to, 
using the drop-down on the right, and an automatically 
generated list of identifiers that map to the original iden-
tifier source. Changing either the ‘to’ or ‘from’ drop-down 
selections automatically updates to display a sample of 
the original identifiers from the uploaded data, and the 
associated remapped identifiers so that the user can con-
firm expectations. Finally, the user may begin the trans-
lation processing, which leads to a new page including 
the remapped data file for download, statistics, some text 
describing the methods and data sources used with a bib-
liography and analysis logs. This information is all avail-
able in a compressed ZIP archive ensuring that important 
information is delivered together as one unit.

Discussion
Databio automates and streamlines the process of gene 
identifier translation, enabling new approaches to data-
driven discovery by lowering the burden of data manip-
ulation and prior knowledge of biomedical resources. 
Support for more identifier sources, more data formats, 
and chained identifier conversions (A → B → C) will 
greatly increase the utility of Databio across the life sci-
ences. In addition, future computational analyses will 
build upon this base, enabling data set search based 
on related data contents and not just shared meta-
data. Together these improvements will enable future 
machine learning applications by removing the need for 
manual intervention in data import processes, shorten-
ing learning times and improving the pace of data-driven 
discovery.

Limitations

•	 Primarily gene-centric automated identifier detec-
tion. We are working to expand the data warehouse 
to include other data types. These methods will 
require further work to allow identification in the 
presence of noise or natural language (e.g. clinical 
reports).

•	 Cannot handle chained/multi-step conversions. e.g. 
to translate from A to X if there is no direct mapping, 
manual translation to an intermediate value is neces-
sary first (A to B, then B to X). This is likely unintui-
tive to new users but an issue we hope to address in 
the future.

•	 Search methods currently scale linearly with search 
scope. e.g. as the data warehouse grows, so does the 
search time. We are working on algorithmic methods 
and data structures to address this limitation.
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