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Abstract 

Objective:  Early disease screening and diagnosis are important for improving patient survival. Thus, identifying early 
predictive features of disease is necessary. This paper presents a comprehensive comparative analysis of different 
Machine Learning (ML) systems and reports the standard deviation of the results obtained through sampling with 
replacement. The research emphasises on: (a) to analyze and compare ML strategies used to predict Breast Cancer 
(BC) and Cardiovascular Disease (CVD) and (b) to use feature importance ranking to identify early high-risk features.

Results:  The Bayesian hyperparameter optimization method was more stable than the grid search and random 
search methods. In a BC diagnosis dataset, the Extreme Gradient Boosting (XGBoost) model had an accuracy of 
94.74% and a sensitivity of 93.69%. The mean value of the cell nucleus in the Fine Needle Puncture (FNA) digital image 
of breast lump was identified as the most important predictive feature for BC. In a CVD dataset, the XGBoost model 
had an accuracy of 73.50% and a sensitivity of 69.54%. Systolic blood pressure was identified as the most important 
feature for CVD prediction.
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Introduction
Modern medical methods prevent disease through early 
intervention rather than treatment after diagnosis. Early 
screening and detection of diseases are major issues in 
the field of healthcare. Breast cancer and cardiovascular 
Disease are the most common diseases among women 
and elderly people, respectively [1–3]. Globally, approxi-
mately 1.3 million new cases of BC are reported each year. 
BC has the highest incidence in developed countries, but 
it has also increased at an alarming rate in low- and mid-
dle-income countries [4]. In addition, CVD accounts for 
approximately half of all deaths in most European coun-
tries [5]. Early screening and diagnosis of BC and CVD 
are the most effective ways to detect early disease and 

reduce mortality [6, 7]. The prediction of BC diagnosis 
through Logistic Regression (LR) and cross-validation 
results in a prediction accuracy of 96.2%, providing a 
basis for computer system diagnosis of breast cytology 
[8]. The current machine learning algorithms for BC and 
CVD prediction are mainly focused on Support Vector 
Machine (SVM), Neural Networks (NNs), and Decision 
Tree (DT) models. In analyses of BC diagnosis datasets, 
Random Forest (RF) [9] and SVM [10] have achieved bet-
ter prediction results than other algorithms. In particular, 
kernel-based SVM can achieve a classification accuracy 
of 83.68% [11]. To avoid the problem of overfitting, a DT 
model with a Chi-square automatic interaction detec-
tor algorithm can be used for feature selection and clas-
sification with an accuracy rate of 74.1% [12]. The AUC 
value of the BC prediction model based on the fusion of 
the sequence forward selection algorithm and the SVM 
classifier can reach 0.9839 [13]. In a previous study, the 
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LR model was used to predict BC using the same BC 
diagnostic dataset used in the present study, and an 
accuracy of 95.72% was reported [14]. Compared to the 
results of that study our results have less risk of overfit-
ting and greater generalization ability due to dimension-
ality reduction and the XGBoost algorithm. For the early 
diagnosis of CVD, statistical learning and intelligent algo-
rithms provide good support; the accuracy of SVM clas-
sification can reach 90.5% [15]. For the coronary heart 
disease dataset in the open database of the Framingham 
Heart Research Center, the AUC of the SVM algorithm 
can reach 0.75 [16]. Previously, XGBoost [17] was used 
to predict the readmission rate for patients with ischemic 
stroke within 90 days after discharge and achieved a final 
AUC value of 0.782 [18]. Among several tested algo-
rithms, XGBoost achieved the best classification per-
formance of the dataset of the China Acute Myocardial 
Infarction Registry, yielding an AUC value of 0.899 [19]. 
Hyperparameters have great impact on the classification 
performance of the XGBoost model. Therefore, in the 
present study, we used two datasets with large differences 
in BC and CVD diagnosis. The logarithmic loss of fivefold 
cross-validation was used to measure the performance of 
the model under the corresponding parameters, and the 
prediction performances of XGBoost, Light Gradient 
Boosting Machine (LightGBM), Gradient Boosting Deci-
sion Tree (GBDT), LR, RF, Back Propagation Neural Net-
work (BPNN), and DT models were compared. Repeated 
sampling was performed, and the standard deviation of 
the results was calculated.

Main text
Methods
Dataset preprocessing
The BC diagnosis dataset was generated at the Uni-
versity of California, Irvine (UCI) Machine Learning 
Repository with a total of 569 data points. We used 
the average of the 10 characteristics of the nucleus. For 
malignant BC tumors, the target diagnosis in the data-
set is encoded “M”; for benign tumors, it is encoded 
“B”. For our analyses, we converted “M” to “1” and “B” 
to “0”. The overall dataset diagnosis results are shown 
in Fig.  1a. The CVD dataset was derived from Kag-
gle’s public dataset, which includes 65,535 patient data 
records and 11 characteristics. The target class “cardio” 
is encoded as “1” if the patient has CVD and “0” if the 
patient is healthy. Additionally, the IDs of patients who 
did not contribute to the prediction were deleted. The 
overall dataset diagnosis results are shown in Fig.  1b. 
Zero-mean normalization (Z Score) was used to pro-
cess the original data. The dataset was then divided into 
a training set (70% of the observations) and a test set 
(30% of the observations). The two datasets employed 

in this study were both used to evaluate classifier per-
formance, but an unbalanced structure was observed 
in the BC dataset (Fig.  1a). Therefore, we compared 
multiple indicators, including F1 score, AUC, Kolmog-
orov-Smirnov (KS), Receiver Operating Characteristic 
(ROC) curve and Precision–Recall (PR) curve, among 
the different models. A challenge in disease prediction 
is correctly evaluating whether the diseased patient 
becomes disease-free. In addition to comparing the 
performance of the classifiers, we also focused on the 
positive (sickness) judgment results. Because the ROC 
curve considers both positive and negative examples, it 
is suitable for evaluating the overall performance of the 
classifier. In comparison, the PR curve focuses only on 
the positive examples.

Models
The models, programming languages, and libraries 
used in this study are shown in Additional file  1. We 
trained all models using Python programming language 
(version 3.7). A personal computer with Intel (R) Core 
(TM) i5-7200U processor, 8 GB of RAM, and a Radeon 
(TM) R7 M445 GPU was used for the experiments. 
Each experiment required approximately 1 to 120 min 
to train the model.

Results
Feature selection
The purpose of feature selection is to reduce the dimen-
sions, which may improve the generalization of our 
algorithm [20–22]. We selected the features by analyz-
ing the correlations among features in the BC diagnosis 
dataset. The correlations among radius, perimeter, and 
area were high, The three characteristics of compact-
ness, concavity, and concave points were also related. 
Additional file  1: Table  S1 illustrates the correlation 
among the features, and the additional doc file contains 
more information (see Additional file 1). Based on the 
correlation analysis, we considered radius and com-
pactness as representatives. After performing feature 
selection in the BC diagnosis dataset, six features were 
retained. Considering that the correlation among the 
features of the CVD dataset is relatively small, the CVD 
dataset uses recursive feature elimination (RFE) and 
fivefold cross-validation to reduce the dimensions. We 
used the number of features corresponding to the mini-
mal logarithmic loss. After the feature selection in the 
CVD dataset, nine features were retained. Additional 
file 1: Fig. S1 illustrates the feature selection process for 
the CVD dataset; the additional doc file contains more 
information (see Additional file 1).
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Performance comparison of different hyperparameter 
optimization methods
To evaluate the effectiveness of the Bayesian parameter 
optimization algorithm, we used grid search and random 
search as comparison methods to adjust the hyperparam-
eters of XGBoost as well as fivefold cross-validation. In 
this study, four hyperparameters with high influence on 
the XGBoost algorithm were selected for adjustment. 
Additional file 1: Table S2 illustrates the hyperparameter 
space; the additional doc file contains more informa-
tion (see Additional file  1). The other parameters used 
the default settings, and the number of iterations was 
5000. The horizontal axis of Fig. 1c, d represents differ-
ent hyperparameter optimization methods in the process 
of hyperparameter selection, and the vertical axis repre-
sents the AUC value predicted by the XGBoost model. 
Fig.  1d shows that the Bayesian hyperparameter opti-
mization method had better stability. Thus, we used the 
Bayesian optimization method for hyperparameter selec-
tion of all algorithms.

Performance comparison of the different classifiers
The classification indicators of the different classifiers 
(LightGBM, GBDT, LR, RF, BPNN, and DT) acting on the 
two datasets were compared with those of the XGBoost 
classifier. The stability of the results was verified through 
1000 repeated samplings. The mean and standard devia-
tion of each indicator were calculated. In the small BC 
diagnostic dataset, XGBoost performed better than 
LightGBM, GBDT, LR, RF, BPNN and DT but was not 
as stable as GBDT. In the large CVD dataset, XGBoost’s 
classification performance was relatively stable (Table  1 
and Fig. 2a–d).

Feature importance ranking
In this experiment, the average gain of each feature in all 
the trees in which it appeared was used to rank the fea-
tures in importance. Features with higher values of this 
metric can be considered more important for predic-
tion than features with lower values. In the BC diagnosis 
dataset, radius mean was the most important feature for 

dc
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Fig. 1  a Overall diagnosis in the breast cancer diagnosis dataset. b Overall diagnosis in the cardiovascular disease dataset. c Comparison of 
different hyperparameter optimization methods for the breast cancer dataset. d Comparison of different hyperparameter optimization methods for 
the cardiovascular disease dataset
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Fig. 2  a ROC curves for the breast cancer diagnosis dataset. b PR curves for the breast cancer diagnosis dataset. c ROC curve for the cardiovascular 
disease dataset. d PR curves for the cardiovascular disease dataset. e Feature importance rankings for the breast cancer dataset. f Feature 
importance rankings for the cardiovascular disease dataset

Table 1  Performance indicators of  different classifiers on  the  breast cancer diagnostic and  cardiovascular disease 
datasets

(a) Values in parentheses are the average and standard deviation of the performance indicator values. For the BC dataset, 300 samples were randomly selected from 
569 samples each time and repeated 1000 times. For the CVD data set, 1000 samples were randomly selected from 65,535 samples each time and repeated 1000 
times.

(b) Italics numbers indicate optimal values

Classifier Indicator

Accuracy (%) Precision (%) Recall (%) F1 score (%) AUC​ KS Value

XGBoost_BC 94.74 (94.40,1.65) 92.19 (93.10,3.25) 93.65 (91.83,3.68) 92.91 (92.38,2.29) 0.9857 (0.9845,0.76) 0.9061

LightGBM_BC 94.74 (94.05,1.69) 92.19 (92.65,3.49) 93.65 (91.26,3.61) 92.91 (92.00,2.33) 0.9821 (0.9835,0.80) 0.9087

GBDT_BC 94.15 (94.72,1.59) 90.77 (94.41,3.24) 93.65 (92.79,2.21) 92.19 (92.96,2.20) 0.9856 (0.9869,0.66) 0.8968

LR_BC 92.40 (93.64,1.62) 89.06 (92.77,3.15) 90.48 (90.09,3.42) 89.76 (91.25,2.19) 0.9825 (0.9847,0.58) 0.8796

RF_BC 92.40 (91.81,1.94) 90.32 (90.24,3.64) 88.89 (87.77,4.67) 89.60 (88.93,2.78) 0.9710 (0.9757,0.94) 0.8690

BPNN_BC 89.47 (92.86,1.85) 89.47 (91.64,4.18) 80.95 (88.80,3.67) 85.00 (90.23,2.56) 0.9669 (0.9778,0.92) 0.8439

DT_BC 87.72 (90.75,1.83) 90.38 (86.76,3.84) 74.60 (88.53,4.92) 81.74 (87.41,2.80) 0.9314 (0.9500,1.53) 0.6997

XGBoost_CVD 73.50 (73.51,0.27) 75.80 (75.55.0.49) 69.54 (69.53,0.51) 72.54 (72.44,0.30) 0.8044 (0.8023,0.26) 0.4733

LightGBM_CVD 73.53 (73.56,0.26) 75.38 (75.82,0.47) 70.40 (69.17,0.60) 72.81 (72.32,0.32) 0.8042 (0.8023,0.26) 0.4762

GBDT_CVD 73.56 (73.51,0.27) 75.70 (75.60,0.49) 69.90 (69.43,0.58) 72.68 (72.38,0.33) 0.8041 (0.8023,0.25) 0.4746

LR_CVD 72.32 (71.92,0.41) 74.90 (74.02,0.72) 67.69 (67.50,0.54) 71.11 (70.62,0.40) 0.7869 (0.7829,0.38) 0.4503

RF_CVD 73.55 (73.51,0.27) 75.98 (76.02,0.72) 69.39 (68.70,0.60) 72.54 (72.17,0.32) 0.8026 (0.8012,0.26) 0.4717

BPNN_CVD 72.85 (72.81,0.31) 73.07 (73.73,1.11) 72.96 (70.98,1.79) 73.01 (72.28,0.53) 0.7945 (0.7917,0.28) 0.4686

DT_CVD 73.26 (73.12,0.17) 76.45 (76.79,0.86) 67.72 (66.42,1.33) 71.83 (71.22,0.48) 0.7954 (0.7942,0.30) 0.4667
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prediction (Fig. 2e). In the CVD dataset, the patient’s sys-
tolic blood pressure was the most important feature for 
predictions (Fig. 2f ).

Discussion
With increasing attention being paid to computer-aided 
diagnosis, disease-assisted diagnosis requires reliable and 
interpretable classifiers. In addition to selecting a reliable 
classifier to achieve better prediction performance, the 
dataset needs to be preprocessed [23]. To improve the 
performance of the classifier, we compared grid search, 
random search, and Bayesian hyperparameter optimi-
zation methods. Unlike traditional grid search and ran-
dom search methods, Bayesian parameter optimization 
algorithms based on Gaussian processes can find stable 
hyperparameters, and they are widely used in machine 
learning [24]. Figure 1c, d shows that compared with the 
smaller dataset, the larger dataset was associated with 
more stable Bayesian hyperparameter optimization per-
formances. XGBoost was compared to LightGBM [25] 
GBDT, LR, RF, BPNN, and DT using two datasets of dif-
ferent sizes. Among the algorithms, XGBoost achieved 
the best accuracy (94.74%), precision (92.19%), sensitivity 
(93.65%), F1 score (92.91%), AUC (0.9875) and PR curve 
for the BC diagnosis dataset. However, the classification 
performance of GBDT was more stable over repeated 
sampling. For the CVD dataset, which has a large amount 
of data, the AUC (0.8044) and PR curve of the XGBoost 
algorithm were optimal, and the performance over 
repeated sampling was largely stable. Therefore, these 
findings indicate that for smaller datasets, although the 
XGBoost algorithm has advantages over LightGBM, 
GBDT, LR, RF, BPNN, and DT algorithms, it is not as sta-
ble as GBDT. For larger datasets, the XGBoost algorithm 
has better classification performance than the other 
algorithms, and its classification performance is stable 
(Table 1 and Fig. 2a–d). Our experiments used the gain 
to rank the importance of the features. A higher value of 
this metric indicates that the feature has higher impor-
tance for prediction. The ranking results of the feature 
importance are shown in Fig.  2e, f. In the BC dataset, 
the average value of the distance from the center of the 
nucleus to the edge (radius mean) of the lesion was the 
most important for prediction, indicating that it is impor-
tant to calculate this feature of the nucleus in the digital 
images of FNA lesions. In the CVD dataset, the systolic 
blood pressure of the patient was the most important for 
prediction, suggesting that it is important to measure the 
patient’s systolic blood pressure during physical exami-
nation. Thus, the methods presented in this paper are 
interpretable and helpful for the predictive evaluation of 
disease and the identification of early, high-risk features.

Limitations
Multiclass data can be used to compare the per-
formance of the models used. The feature selection 
method needs further research. In addition to cor-
relation analysis and RFECV, Gradient Boosted Fea-
ture Selection [26] can also be tried to further reduce 
relevant and non-redundant features for supervised 
classification problems. In future work, we would 
like to further improve the classification prediction 
performance.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1310​4-020-05050​-0.

Additional file 1. Information on feature selection, hyperparameter 
spaceand programing languages and libraries.The doc file contains two 
tables and one figure. The first table shows thecorrelation among the 
features of the breast cancer diagnosis dataset. Thefirst figure illustrates 
the feature selection process for the cardiovascular disease dataset. The 
second table shows the hyperparameter space.

Additional file 2. The dataset used in the manuscript.The .csv file contains 
a breast cancer diagnosis dataset and a cardiovasculardisease dataset.
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