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Draft genome sequence of antimicrobial 
producing Paenibacillus alvei strain MP1 reveals 
putative novel antimicrobials
Magdalena Pajor1*  , Jonathan Sogin2, Randy W. Worobo2 and Piotr Szweda1

Abstract 

Objective:  A Paenibacillus strain isolated in previous research exhibited antimicrobial activity against relevant human 
pathogens including Staphylococcus aureus and Listeria monocytogenes. In this study, the genome of the aforemen-
tioned strain, designated as MP1, was shotgun sequenced. The draft genome of strain MP1 was subject to multiple 
genomic analyses to taxonomically characterize it and identify the genes potentially responsible for its antimicrobial 
activity.

Results:  Here we report the draft genome sequence of an antimicrobial producing Paenibacillus strain, MP1. Average 
Nucleotide Identity (ANI) analysis established strain MP1 as a new strain of the previously characterized Paenibacillus 
alvei. The genomic analysis identified several putative secondary metabolite clusters including seven Nonribosomal 
Peptide Synthetase clusters (NRPS) (> 10,000 nt), one bacteriocin or other unspecified Ribosomally Synthesized and 
Post-Translationally modified Peptide Product (RiPP), one lanthipeptide, and six hybrid clusters (NRPS-Type I Polyketide 
synthase (T1PKS) and NRPS-trans Amino Transferase Polyketide Synthase (AT-PKS)).
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Introduction
Paenibacillus spp. produce a variety of peptide and non-
peptide-containing antimicrobial compounds. These 
compounds include hydrolytic enzymes, lantibiotics, 
polymyxins, paenibacterin, various organic molecules, 
and others [1]. Of these compounds, antimicrobial pep-
tides are a promising group to target for the discovery 
of novel metabolites. These peptides are broadly classi-
fied based on their synthesis mechanism: ribosomally-
synthesized bacteriocins and nonribosomally synthesized 
peptides (NRPs). Whereas bacteriocins are ribosomally-
synthesized and post-translationally modified, NRPs are 
produced by large enzymes called nonribosomal peptide 

synthetases (NRPSs). NRPSs catalyze the incorporation 
and elongation of growing peptide chains without an 
RNA template. Regiospecific and stereospecific reactions 
catalyzed by NRPSs allow for the incorporation of non-
canonical amino acids into these peptides, which con-
tributes to the structural diversity of NRPs [2]. However, 
the discovery of NRPs is limited to genetic screens and 
genomic-based prediction of NRPs based on the struc-
ture of active sites in NRPSs. Therefore, many NRPs may 
be novel and yet to be discovered.

Although there is increasing interest in Paenibacil-
lus spp. for the discovery of novel antimicrobials, the 
genomic information of these bacteria remains insuf-
ficient [3]. Previously, a  Paenibacillus strain isolated 
from buckwheat honey [4] was identified as a  producer 
of antimicrobial compound(s) with activity against both 
Gram-positive and Gram-negative pathogens, including 
S. aureus and L. monocytogenes. The goal of this study 
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was to conduct whole-genome sequencing of this strain, 
hereafter designated MP1, to taxonomically characterize 
it and identify genes possibly responsible for the produc-
tion of the compound(s) that yield strain MP1 its antimi-
crobial activity.

Main text
Methods
Strain MP1 was maintained at − 80  °C in 15% (vol/vol) 
glycerol Luria–Bertani medium (Becton–Dickinson, 
Franklin Lakes, NJ). Prior to extraction, strain MP1 was 
streaked and grown on Luria–Bertani agar. Genomic 
DNA was isolated from a culture of strain MP1 grown 
by inoculating 9  mL Luria–Bertani medium with a sin-
gle colony and incubating at 37 °C for 18 h with continu-
ous shaking at 200 rpm. DNA was extracted from 1.8 mL 
culture using the QiaAMP DNA Minikit (Qiagen, Ger-
mantown, MD) following a slightly modified protocol. 
In brief, cells were pelleted and subjected to lysozyme 
(20  mg/mL) treatment (Millipore Sigma, St. Lois, MO) 
at 37 °C for 60 min; DNA was extracted from this lysate 
using the QiaAMP DNA Minikit following manufacturer 
instructions for RNA-free genomic DNA using RNase 
A (Qiagen, Germantown, MD). Following extraction, 
DNA was spectrophotometrically quality checked using 
a NanoDrop (Thermo Fisher, Waltham, MA) to ensure 
the 260/280 and 260/230  nm absorbance ratios were 
greater than 1.8 and 2.0 respectively. Library prepara-
tion, quality control, and sequencing were conducted by 
the Cornell University Veterinary Molecular Diagnostics 
Laboratory utilizing the Nextera XT DNA library prepa-
ration and indexing kits (Illumina, San Diego, CA) and 
an Illumina MiSeq (Illumina, San Diego, CA) to obtain 
2 × 250  bp paired-end reads; this yielded 3,467,242 raw 
reads (866 Mb).

Raw reads were trimmed and paired using Trim-
momatic (v0.39) [5] with the parameters: LEADING:3 
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:26. 
Trimmed and paired reads were first quality checked 
using FastQC (v0.11.8) [6] to ensure normal results for 
‘per base sequence quality’, ‘per base N content’, ‘sequence 
duplication levels’ and ‘adapter content’, and then de novo 
assembled into scaffolds using SPAdes (v3.13.1) [7–9] 
with the parameters: -k 33,55,77,99,127 -careful. Follow-
ing assembly, scaffolds less than 500  bp were removed. 
QUAST (v4.0) [10] was used to obtain basic assem-
bly statistics (e.g. # scaffolds, N50, G + C content), and 
BBmap (v37.50) [11] and Samtools (v1.9) [12] were used 
to determine average sequencing coverage as previously 
described [13].

The species identification of strain MP1 was deter-
mined by ANI analysis of strain MP1′s genome versus the 
whole genomes of all available Paenibacillus type strains 

deposited in the National Center for Biotechnology 
Information (NCBI) assembly database. Following this, 
all-v-all ANI analysis was conducted among all strains 
with whole genomes deposited in the NCBI assembly 
database for the species of the closest related type strain. 
ANI analysis was conducted via the OrthoANI method 
using OAT (v1.40) [14] with BLAST + (v2.9.0) [15]. The 
species and strain names for both sets of comparisons 
can be found in Supplementary Data - Data 1 and Data 2. 
Hierarchical cluster analysis was conducted in R (v3.5.3) 
[16] via the complete-linkage method on dissimilar-
ity values between strains for the species of the closest 
related type strain, computed as 1− ANI%

100
 , to determine 

relatedness. Cluster analysis was visualized using R.
Genome annotation was conducted by the NCBI using 

the Prokaryotic Genome Annotation Pipeline (PGAP) 
[17, 18]. Because it was determined that strain MP1 pro-
duces antimicrobial compounds, the PGAP annotated 
genome was further analyzed using the AntiSMASH 
webserver (v5.1.0) [19] to identify putative second-
ary metabolite clusters and compare synteny of those 
clusters to related clusters in other genomes. Genes of 
interest identified by AntiSMASH were translated and 
compared to related proteins in the non-redundant pro-
tein sequences database using the NCBI BLASTp suite 
with default settings [20]. The genome of strain MP1 
was compared to the type strain of the identified spe-
cies using Mauve (v20150226) [21, 22] with progressive 
alignment and seed-families options, and the webserver 
Phaster [23, 24].

Results
The resulting assembly of strain MP1 contained 116 
scaffolds with an N50 value of 129,056 bp, 46.11% G + C 
content, and 6,511,289  bp; average sequencing coverage 
was 106.03 × (Additional file  1: Summary Quast Table). 
The draft genome of strain MP1 (annotated via PGAP) 
encodes 5915 genes; 5626 are coding sequences, 198 are 
pseudogenes, and 91 are functional or regulatory RNAs. 
Of the functional or regulatory RNAs, 71 are tRNAs, 5 
are complete rRNAs (5–5S), 11 are partial rRNAs (1–5S, 
3–16S, and 7–23S), and 4 are ncRNAs; the genome also 
contains 3 CRISPR arrays.

ANI analysis showed strain MP1 was most closely 
related to type strain P. alvei DSM 29 (97.68%, ref-
seq accession GCF_000293805.1) (Additional file  2). 
When compared to other strains within the species P. 
alvei, MP1 was more distantly related: B-LR (84.89%, 
GCF_900519125.1), TS-15 (84.78%, GCF_000442555.1), 
and A6-6i-x (84.60%, GCF_000442535.1) (Additional 
file  3). However, these values are higher than the ANI 
values between strain MP1 and other Paenibacillus type 
strains (median = 67.78%, 1st quartile = 67.51%, 3rd 
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quartile = 67.97%, n = 124). Hierarchical cluster analysis 
revealed two distinct clusters above 95% ANI; one cluster 
contained strains MP1 and DSM 29, and the other con-
tained strains B-LR, TS-15, and A6-6i-x (Fig. 1). ANI val-
ues were computed via the orthoANI algorithm and ANI 
distances were calculated as 1 – ANI(%)/100. Hierarchi-
cal cluster analysis was computed via the complete-link-
age method. Numbers in parentheses correspond to the 
NCBI RefSeq accession number for the assembly used in 
the analysis. The vertical red line corresponds to a 95% 
ANI threshold commonly used for species designations.

When comparing the genome of strain MP1 to the 
genome of type strain P. alvei DSM 29 (including 4 plas-
mids), subtle differences were revealed. Strain MP1 con-
tained 626 less genes than the whole genome of type 
strain DSM 29 (6,541 genes). When visualized using 
Mauve, it became clear that divergent regions were 
related to the presence of mobile genetic elements (plas-
mids, prophage, and transposons) within each genome, 
specifically plasmids and prophage. This was confirmed 
when the individual genomes were analyzed using 
Phaster. The results from Phaster indicate a difference 
of 594 genes attributed to the presence of 13 prophage 
regions in strain MP1 (total = 377 genes) vs 20 in type 
strain DSM 29 (total = 971) (Additional files 4 and 5).

AntiSMASH analysis of the PGAP annotated MP1 
genome predicted the presence of several putative 

secondary metabolite clusters including seven NRPS 
clusters (operons > 10,000 nt), one bacteriocin, one lan-
thipeptide, four hybrid NRPS clusters containing NRPSs 
and polyketide synthetases (type I or trans-acyltrans-
ferase), one hybrid cluster containing a lasso peptide and 
NRPSs, and one hybrid cluster containing a sactipeptide 
and resorcinol. Notably, strain MP1 contained one large 
operon with five putative NRPS genes spanning 71,579 
nt with no similarity to genes involved in the biosynthe-
sis of other known NRPs; type strain DSM 29 contained 
a similar cluster that displayed synteny with strain MP1 
(Fig. 2d). In addition, other clusters encoding for a bac-
teriocin, sactipeptide, and lasso peptide were identified 
with no similarity to known antimicrobial producing 
gene clusters.

Three clusters were identified with 100% similarity to 
known NRP synthesis pathways; each of these clusters 
showed synteny with clusters identified in type strain 
DSM 29 (Fig.  2a–c). One hybrid gene cluster contained 
NRPS genes showing similarity to genes involved in the 
synthesis of polymyxin B. When the translated sequences 
of these genes were compared to related proteins using 
BLASTp, they displayed high similarity to proteins 
involved in the synthesis of variant forms of polymyxin B 
(1 and 2) produced by a strain of P. polymyxa [25]: PmxA 
(89.15%, AEZ51516.1), PmxB (96.28%, AEZ51517.1), 
PmxC (95.89%, AEZ51518.1), PmxD (98.61%, 

Fig. 1  Dendrogram of ANI distances between strain MP1 and strains classified as Paenibacillus alvei 
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AEZ51519.1), PmxE (95.41%, AEZ51520.1). Another 
hybrid cluster contained NRPS genes showing similarity 
to genes involved in the synthesis of paenibacterin. When 
the translated sequences of these genes were compared to 
related proteins using BLASTp, they displayed similarity 
to proteins involved in the synthesis of paenibacterin pro-
duced by a strain of P. thiaminolyticus [26]: PbtA (67.45%, 
AGM16412.1), PbtB (67.70%, AGM16413.1), PbtC 
(60.12%, AGM16414.1), PbtD (72.87%, AGM16415.1), 
and PbtE (70.92%, AGM16416.1). Finally, a NRPS clus-
ter contained NRPS genes showing similarity to genes 
involved in the synthesis of paenibactin. When the trans-
lated sequences of these genes were compared to related 
proteins using BLASTp, they displayed similarity to pro-
teins involved in the synthesis of paenibactin produced 
by a strain of P. elgii [27]: PaeG (59.64%, AEI70240.1), 
PaeA (75.00%, AEI70241.1), PaeC (58.17%, AEI70242.1), 
PaeE (77.09%, AEI70243.1), PaeB (66.56%, AEI70244.1), 
and PaeF (67.78%, AEI70245.1).

Discussion
The ANI value between MP1 and type strain P. alvei 
DSM 29 indicates that strain MP1 is a new strain within 
the species Paenibacillus alvei when considering the 95% 
threshold suggested by others [28, 29]. However, the ANI 
values between strain MP1 and other P. alvei strains, and 
the hierarchical cluster analysis, suggests that at present, 
P. alvei is a fragmented species. ANI values between 
type strain DSM 29 and the others were lower than 95%, 
which indicates those strains were originally misclassified 

and/or represent a novel species of Paenibacillus. Strains 
MP1 and DSM 29 both originated from honey or bee-
related sources [4, 30], whereas the others did not [3, 31]; 
the introduction of a common ancestor to bees could 
have led to niche specialization that caused speciation.

The difference in the number of genes between strains 
MP1 and DSM 29 is almost completely attributed to dif-
ferences in mobile genetic element composition, namely 
phage and plasmids. Type strain DSM 29 contains 4 plas-
mids, two which contain putative prophage; the method 
used to assemble the genome of strain MP1 does not 
attempt to identify plasmids. However, when analyzed 
for the presence of prophage, it became clear that almost 
the entire difference in the number of genes within each 
of the assemblies was due to differences in the compo-
sition of prophage. The remaining difference is likely 
due to the presence of plasmid associated maintenance 
genes that were not identified during prophage analysis. 
Varying mobile genetic element composition is reason-
able to expect given the geographic origin of each isolate 
(MP1—Poland, DSM 29—United Kingdom); the popula-
tion of phage in communities is dynamic, and geographic 
origin likely affected the composition of microbial com-
munities, including phage, each isolate was exposed to. 
Nonetheless, due to the high ANI value between MP1 
and DSM 29, strain MP1 is a new representative of the P. 
alvei species.

AntiSMASH analysis of the PGAP annotated MP1 
genome confirmed its potential to produce a  variety of 
nonribosomal peptides and polyketides. Some of the 

Fig. 2  Synteny between strain MP1 and type strain DSM 29 of several NRPS clusters identified via AntiSMASH. Bracketed portions of the 
comparisons correspond to core biosynthetic genes for the associated NRPs
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identified clusters were related to previously known com-
pounds including polymyxin, paenibacterin, and paeni-
bactin; others were not—such as the lasso peptide cluster. 
The most recent results support that the structure of 
paenibacterin as a cyclic lipodepsipeptide antibiotic 
might be useful for creating new antibiotics via synthetic 
routes [32], which is necessary as antimicrobial resist-
ance arise and requires the development of novel anti-
microbial agents. Furthermore, lasso peptides constitute 
a group of relatively new, non-toxic natural compounds 
with antimicrobial activity, however, their highly stable 
structure requires further molecular modification for 
potential medical applications [33]. Paeninodin synthe-
sized by P. dendritiformis C454 was reported in 2016 as 
the novel lasso peptide tailored by a new class of kinases 
[34]. The potential use of these antimicrobials indicates 
that further investigation of antimicrobials produced by 
members of the genus Paenibacillus, including strain 
MP1, could lead to the discovery of medically relevant 
(or otherwise) compounds for use against pathogenic 
organisms.

Finally, this study demonstrates several antimicrobial 
compounds are yet to be characterized and highlights 
the necessity to experimentally verify the function of 
synthesis genes. Such efforts will result in a better under-
standing of the structure and synthesis of antimicrobial 
compounds and will lead to better genome-based predic-
tions in the future.

Limitations
The acknowledged analysis is based on the draft genome 
of strain MP1. Therefore, regions of the complete genome 
may be duplicated or missing from the assembly.
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