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Abstract 

Objective:  The potential use of symbiotic bacteria for the control of mosquito-borne diseases has attracted the 
attention of scientists over the past few years. Culiseta longiareolata is among the medically important mosquitoes 
that transmit a wide range of vector-borne diseases worldwide. However, no extensive studies have been done on 
the identification of its symbiotic bacteria. Given the role of this species in the transmission of some important dis-
eases and its widespread presence in different parts of the world, including northwestern parts and the West Azer-
baijan Province in Iran, a knowledge about the symbiotic bacteria of this species may provide a valuable tool for the 
biological control of this mosquito. Accordingly, the present study was conducted to isolate and identify the cultiva-
ble isolates bacterial symbionts of Culiseta longiareolata using 16S rRNA fragment analysis.

Results:  The midguts of 42 specimens of Cs. longiareolata were dissected, and the bacteria were cultured on agar 
plates. After the purification of the bacterial colonies, 16srRNA region amplification and gene sequence analysis were 
performed, and the sequences were confirmed by biochemical methods. In the present study, 21 isolates belonging 
to the genera Acinetobacter, Aerococcus, Aeromonas, Bacillus, Carnobacterium, Klebsiella, Morganella, Pseudomonas, 
Shewanella and Staphylococcus were identified.
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Introduction
Acting as vectors of diseases, mosquitoes transmit a wide 
range of parasite and arbovirus pathogens which are of 
veterinary and medical importance [1, 2]. Some spe-
cies of mosquitoes are widely distributed throughout 
the world and are involved in the transmission cycle of a 
notable number of mosquito-borne diseases.

Among the veterinary and medically important mos-
quito species is the multivoltine Culiseta longiareolata. 

This species is thermophilic and highly ornithophilic 
[3]. It is widely distributed in Europe, Asia, Africa, and 
the Mediterranean Sea [4], and acts as the vector of 
some infectious diseases such as the avian malaria [5, 6], 
tularemia [3], and arboviruses like West Nile fever [7–9].

Since mosquito-borne diseases cause serious health 
problems in many parts of the world, identifying different 
aspects of the biology of mosquito is of great importance. 
Knowledge about the biological properties, environmen-
tal requirements, and food chains [10, 11] of mosqui-
toes can be utilized for biological control. The symbiotic 
microbiota associated with mosquitoes have been found 
to affect most of their biological activities [12–14].
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The symbiotic microbiota associated with each mos-
quito and their role in the biological activities of the 
mosquitoes can provide a valuable tool for the biologi-
cal control of disease vectors [15–21]. Symbiotic bac-
teria affect the development [22, 23], nutrition [24, 25], 
reproduction [26–28], defense mechanisms [29, 30], and 
immunity [31] of mosquitoes. To understand the effect of 
symbiotic bacteria in the biological control of mosquitoes 
or mosquito-borne diseases, accurate identification of 
the symbiotic bacteria associated with each vector is an 
important first step [32, 33].

Although symbiotic bacteria have been studied and 
identified in different mosquito species [33–42], so far, 
no study has been performed on the identification of bac-
terial symbionts of Cs. longiareolata.

Given the role of this species in the transmission of 
some important diseases and its widespread presence in 
different parts of the world, including the northwestern 
region [34, 43–46] and West Azerbaijan Province (which 
shares border with four countries) in Iran, the symbiotic 
bacteria of Culiseta longiareolata were investigated in 
this study. In the present study, the cultivable bacterial 
symbionts of Culiseta longiareolata were isolated, culti-
vated and identified using 16S rRNA fragment analysis.

Main Text
Material and Methods
Field collection of Cs. longiareolata and isolation of midgut 
bacteria
Mosquitoes specimens were collected from three regions 
of Urmia County (1- Naz-Loo: 37.651213, 44.983285, 2- 
Ghahraman-Loo: 37.659869, 45.207550, and 3- Moallem 
37.546660, 45.033280) in the West Azerbaijan Province 
in the Northwestern region of Iran (Additional file  1: 
Figure S1) during May–August 2018 using different pre-
viously described collection methods [47]. The collec-
tion techniques used in this study included the standard 
dipping method for larvae collection, and hand catches, 
day and night landing catches on cows, total catch, and 
pit shelter collection for adult specimens. The specimens 
were transferred alive to the entomology laboratory of 
the Department of Medical Entomology in the School of 
Public Health, and species were identified using morpho-
logical characteristics-based keys [48].

Adult female specimens of Cs. Longiareolata were 
identified and used for gut bacteria isolation. These spec-
imens were sterilized, and their midguts were dissected 
individually under sterile conditions, according to previ-
ously described methods [33, 39].

The dissected midguts were mashed and suspended in 
500  μL of Brain Heart Infusion (BHI), and the suspen-
sion was incubated at 28 ± 2 °C and 200 rpm for 24 h. A 
100 μL aliquot of the midgut contents was serially diluted 

up to 10−6 and plated onto Nutrient Agar (Merck, Ger-
many) and incubated at 28 ± 2 °C for 24–48 h [39]. Con-
tinuous sub-culture of each bacterial colony using the 
streaking method was done to isolate single purified 
colonies of the bacteria. The individual colonies of the 
bacteria were later used for DNA extraction and PCR, 
biochemical and phenotyping studies.

16S rRNA gene amplification and sequencing
All purified bacterial colonies were individually sub-
jected to genomic DNA extraction using the FavorPrep™ 
Kit (Favorgen, Taiwan), according to the manufacturer’s 
instructions. The 16S rRNA universal primers and previ-
ously described PCR program were used to amplify the 
16S rRNA fragment [49]. The acquired PCR amplicons 
were sequenced by Microsynth (Swiss).

All acquired sequences were checked for the presence 
of probable chimeric sequences by the Mallard program 
(https​://www.bioin​forma​tics-toolk​it.org). All suspi-
cious sequences were removed from the data set, and the 
resulting sequences were analyzed. The sequences were 
compared to the databases of the Ribosomal Database 
Project (RDP II; Michigan State University: rdp.cme.msu.
edu) and the GenBank (www.ncbi.nlm.nih.gov/BLAST​
). Isolates were identified at the Genus and Species level 
based on sequence comparison using the GenBank and 
RDPII entries.

Finally, sequencing results that were consistent with 
the results of the biochemical studies were considered as 
reliable and definitive sequence of the bacterial isolates.

The MEGA7 [50] was used for phylogenetic analysis 
and tree construction. The Maximum Likelihood (ML) 
method was used for the phylogenetic tree construc-
tion based on the Tamura 3-parameter model [51] (1000 
bootstrap replicates) analyses.

Results
In the present study, five species belonging to three gen-
era of mosquitoes were collected and identified (An. mac-
ulipennis, Culex modestus, Cx. pipiens, Cx. theileri and 
Cs. longiareolata) in three sites across the Urmia County.

After species identification, specimens of Cs. lon-
giareolata were selected for the purpose of the study. 
The midguts of 42 specimens of Cs. longiareolata 
were dissected, and the bacteria were cultured on agar 
plates to obtain bacterial colonies. After the purifica-
tion of the bacterial colonies, 16srRNA region ampli-
fication and gene sequence analysis were performed 
for the bacterial isolates, and the sequences were 
confirmed by biochemical methods. In the present 
study, 21 isolates belonging to ten genera of bacteria 
were identified. The bacteria genera identified in this 
study include, Acinetobacter, Aerococcus, Aeromonas, 

https://www.bioinformatics-toolkit.org
http://www.ncbi.nlm.nih.gov/BLAST
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Bacillus, Carnobacterium, Klebsiella, Morganella, Pseu-
domonas, Shewanella, and Staphylococcus. All acquired 
sequences were deposited in GenBank. The accession 
nos. of the bacterial species have been presented in 
Table 1.

Among the ten identified bacteria Genera, six were 
Gram-negative (Acinetobacter, Aeromonas, Klebsiella, 
Morganella, Pseudomonas and Shewanella) and four 
Genera were Gram-positive (Aerococcus, Bacillus, Car-
nobacterium and Staphylococcus).

Among the 21 isolates from the midgut of adult Cs. 
longiareolata, Aeromonas was the most frequent sym-
biont with eight isolates. Two species belonging to each 
of the genera Aeromonas, Klebsiella, Morganella, and 
Pseudomonas were also isolated and identified from the 
midgut of adult Cs. longiareolata.

Interestingly, the phylogenetic analysis of the 
acquired sequences of the bacteria isolates showed 
distinct monophyletic clades based on gram staining 
properties of their cell wall (Gram-negative and Gram-
positive bacteria) (Fig. 1).

Also, phylogenetic analysis of the sequences obtained 
from the present study and similar sequences retrieved 
from the GenBank revealed the placement of bacteria 

of the same species and Genera in common branch and 
clades (Fig. 2).

Discussion
The present study is the first report on the bacterial sym-
bionts associated with the midgut of Cs. longiareolata. 
This mosquito vector plays a notable role in the transmis-
sion and maintenance of the transmission cycle of impor-
tant diseases such as avian malaria [5, 6], tularemia [3], 
and arboviruses like West Nile fever [7–9] as secondary 
a vector.

The results of the midgut symbiotic bacteria of this 
vector are consistent with the results of many studies 
conducted on other vectors. In previous studies, symbi-
otic bacteria isolated from the midgut of Aedes aegypti 
[52] and Cx. quinquefasciatus [53] were predominantly 
members of the genus Bacillus, Klebsiella, Pseudomonas 
and Staphylococcus, which is consistent with the results of 
the present study. In another study conducted in India, 
members of the Genus Aeromonas were isolated from 
Cx. quinquefasciatus [54], which is also in agreement 
with the present study.

Symbiotic bacteria belonging to the genera Morganella, 
Aeromonas, and Klebsiella have also been identified in 
Anopheles fluviatilis [55], which is similar to the findings 
of our study.

Concerning the result of the present study, which iden-
tified the predominant isolates in the midgut of Cs. lon-
giareolata, this finding is in agreement with the results of 
the dominant bacteria in the midgut of An. stephensi and 
An. culicifacies [33, 39], Aedes aegypti [56].

The identification of suitable candidates for para-
transgenesis in the use of symbionts for biological control 
of vectors is of major interest to researchers. Members 
of the Genus Pseudomonas have been suggested in some 
studies as suitable candidates for paratransgenesis [16, 
32, 35, 57–59]. In the present study, members of the 
genus Pseudomonas were identified in Cs. longiareolata, 
which confirms the results of previous studies which have 
reported the wide range of presence of Pseudomonas 
bacteria in different mosquito species.

In the first part of the study, different mosquito species 
were collected and identified. We captured five species of 
mosquitoes (An. maculipennis, Culex modestus, Cx. pipi-
ens, Cx. theileri and Cs. longiareolata) in the study area. 
Previous studies have also identified these mosquito spe-
cies in the northwest of Iran [43–46].

The five species captured in this study are important 
vectors of human and animal diseases. The geographical 
location of the northwest region of Iran (shares border 
with four countries) and the climatic diversity, as well as 
the history of mosquito-borne diseases makes this region 
vulnerable to a wide variety of mosquitoes. The presence 

Table 1  Bacteria of  midgut of  Cs. longiareolata and  their 
accession numbers

Genus Species/isolate Accession No Gram’s 
staining

Acinetobacter radioresistens Urmia-Culis-b MK840759 N

Aerococcus urinaeequi Urmia-Culis-12 MK840745 P

Aeromonas hydrophila Urmia-Culis-6 MK840743 N

salmonicida Urmia-Culis-13 MK840746 N

Bacillus safensis Urmia-Culis-18 MK840747 P

safensis Urmia-Culis-20 MK840748 P

sp. Urmia-Culis-48 MK840755 P

subtilis Urmia-Culis-49 MK840756 P

sp. Urmia-Culis-50 MK840757 P

pumilus Urmia-Culis-63 MK840758 P

safensis Urmia-Culis-f MK840760 P

sp. Urmia-Culis-g MK840761 P

Carnobacterium maltaromaticum Urmia-
Culis-11

MK840744 P

Klebsiella oxytoca Urmia-Culis-34 MK840752 N

oxytoca Urmia-Culis-46 MK840754 N

Morganella morganii Urmia-Culis-29 MK840749 N

morganii Urmia-Culis-32 MK840751 N

Pseudomonas protegens Urmia-Culis-30 MK840750 N

sp. Urmia-Culis-3 MK840741 N

Shewanella sp. Urmia-Culis-4 MK840742 N

Staphylococcus epidermidis Urmia-Culis-36 MK840753 P
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of these vectors in this region requires public health 
attention, and the design of appropriate control programs 
is necessary to prevent the occurrence of epidemics.

Conclusion
The present study identified bacterial symbionts of Cs. 
longiareolata. To the best of our knowledge, this is the 
first report of bacteria symbiont of Cs. longiareolata. Is 
is recommended that future research in this area focus 
more precisely on identifying the biological properties 
of the isolated symbiotic bacteria, their biodiversity, and 
the biological relationship with their hosts, with the aim 
of developing new symbiont-based control programs. 

Previous studies have suggested that members of the 
Genus Pseudomonas may be suitable candidates for par-
atransgenesis. The isolation of Pseudomonas spp. in the 
present study confirms the wide spread of this genus in 
mosquito species and may further support the use of this 
species as a candidate for paratransgenesis to control 
mosquito-borne diseases.

Limitations
Only the symbionts of the adult stage of Cs. longiareolata 
were identified.

Fig. 1  Evolutionary relationships of bacterial symbionts of Cs. longiareolata. The evolutionary history was inferred using the Neighbor-Joining 
method [60]. The optimal tree with the sum of branch length = 1.08886518 is shown. The percentage of replicate trees in which the associated 
taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [61]. The tree is drawn to scale, with branch lengths 
in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the 
Maximum Composite Likelihood method [62] and are in the units of the number of base substitutions per site. The analysis involved 21 nucleotide 
sequences. All positions containing gaps and missing data were eliminated. There were a total of 879 positions in the final dataset. Evolutionary 
analyses were conducted in MEGA7 [50]
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Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1310​4-020-05220​-0.

Additional file 1: Figure S1. Location of West Azerbaijan Province 
and Urmia County and sampling localities, 1—Naz-Loo: 37.651213, 
44.983285, 2—Ghahraman-Loo: 37.659869, 45.207550, and 3—Moal-
lem: 37.546660, 45.033280 (Original basic map has been prepared from 
d-maps.com).

Fig. 2  Evolutionary relationships of bacterial symbionts of Cs. longiareolata (indicated by ■), compared with other sequences retrieved 
from GenBank). The evolutionary history was inferred using the Neighbor-Joining method [60]. The optimal tree with the sum of branch 
length = 0.96545507 is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 
replicates) are shown next to the branches [61]. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary 
distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Maximum Composite Likelihood method [62] 
and are in the units of the number of base substitutions per site. The analysis involved 38 nucleotide sequences. Codon positions included were 
1st + 2nd + 3rd. All positions containing gaps and missing data were eliminated. There were a total of 876 positions in the final dataset. Evolutionary 
analyses were conducted in MEGA7 [50]
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