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Abstract 

Objective: The role of Mycobacterium tuberculosis complex (MTBC) species in tuberculosis (TB) infection in human is 
still questioned. The aim of this study was to determine whether M. tuberculosis and M. bovis is associated with apop-
tosis and necroptosis by measuring the expression of specific signaling pathways components (Fas-associated protein 
with death domain (FADD) and receptor interacting protein 3 (RIP3)), and the level of apoptosis.

Results: We recruited 30 patients with pulmonary TB; 24 patients were infected with M. tuberculosis Beijing strain and 
six patients with M. bovis BCG strain. M. tuberculosis-infected patients were more likely to have severe lung damage 
compared to those infected with M. bovis (odds ratio [OR] 7.60; 95% confidence interval [CI] 1.07–54.09). M. tuberculo-
sis infection was associated with lower expression of FADD and lower apoptosis level of macrophages compared to M. 
bovis. No significant different of RIP3 between MTBC species groups. In conclusion, M. tuberculosis Beijing strain was 
associated with severe pulmonary damage, inhibited FADD expression and reduced apoptosis level of macrophages 
derived from pulmonary TB patients. This suggests that the M. tuberculosis Beijing strain is potentially to be used as 
determinant of disease progressivity and tissue damage in TB cases.
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Introduction
Mycobacterium tuberculosis complex (MTBC) continues 
to significantly impact public health and is associated 
with one million deaths of tuberculosis (TB) cases annu-
ally worldwide [1]. Ability of M. tuberculosis to establish 
disease is entirely depend on macrophage deaths during 

infection. Pulmonary macrophages are critical compo-
nent of the primary innate immune response that have 
various functions in immune surveillances, removal of 
cellular debris, microbial clearance, and in resolution 
of inflammation [2]. There are two pathways of mac-
rophage deaths, apoptosis and necroptosis, that are 
developed as host antimicrobial defenses in the early TB 
infection; both of them are programmed cell death [3]. 
These mechanisms are triggered by tumor necrosis fac-
tor alpha (TNFα), oxidative stress, lipopolysaccharide 
(LPS), and other factors [4]. Apoptosis is characterized by 
signaling cell through Fas-associated protein with death 
domain (FADD), a crucial protein that is associated with 
death receptors (DRs) [5]. Necroptosis can be induced 
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if apoptotic signaling is inhibited through formation of 
receptor interacting protein 3 (RIP3) [6, 7].

MTBC comprises of many members including M. 
tuberculosis, M. africanum, M. canettii, M. bovis, M. 
microti, M. orygis, M. caprae, M. pinnipedii, M. suricat-
tae and M. mungi) [8]. These members have different 
cellular components, the ability of human-to-human 
transmission, and severity of disease [9]. M. bovis lacks 
of trehalose-containing glycolipids on its cell walls that 
could affect the virulence and adaptability within the host 
cells. The genetic analysis showed that the loss of treha-
lose-containing glycolipids was related to disturbance 
surface-exposed acyltrehaloses such sulfatides (SLs), dia-
cyltrehaloses (DATs), triacyltrehaloses (TATs) and penta-
cyltrehaloses (PATs) and the phoPR component signaling 
system [10, 11]. In M. tuberculosis, this PhoPR system 
plays a role in the regulation of cell wall complex lipid 
biosynthesis and the secretion of EsxA/ESAT-6 for mod-
ulating the immune response [12]. Reduced this signal-
ing system in M. bovis has been linked to less virulence in 
humans [11]. Another study showed that MTBC species 
with dominant PhoP gene expression are hypervirulent 
and resistant to tuberculosis drugs [13].The role of MTBC 
species have been proven in various animal models [14], 
but still be questioned in human [9]. Although some spe-
cies have 99.9% similarity of nucleotide sequences, they 
have different abilities to induce macrophages death 
[15]. Apoptosis and necroptosis play the important roles 
in innate immune responses against pathogens [16] 
and are crucial in TB infection [17, 18]. In vitro studies 
showed that the apoptosis of BCG-infected monocytes 
by the exogenous drug was associated with a reduction 
of bacillary viability while necrosis was not associated 
with reduction of BCG viability [19, 20]. Another study 
found that if apoptosis was predominated during a TB 
infection the bacteria were potentially to be cleared [21]. 
M tuberculosis Beijing strain with high virulent inhibits 
apoptosis, and triggers necroptosis because it evades the 
immune system, induces the necrosis, lyses of the cellu-
lar components, and induces the parenchymal destruc-
tion and therefore is associated with severe TB [22]. The 
aim of this study was to assess the role of M. tuberculosis 
and M. bovis on the state of apoptotic and necroptosis of 
macrophages isolated from TB patients.

Main text
Method
Study setting and patients
Between June and October 2017, a cross-sectional study 
was conducted. Confirmed new pulmonary TB cases 
were recruited from Tuberculosis Clinic at Soewandhie 
Hospital, Surabaya, Indonesia. Bacteriological confir-
mation was conducted by sputum acid fast staining and 

GeneXpert MTB/RIF test (Cepheid, Sunnyvale, CA, 
USA). For the study purpose, the patients underwent 
fiber optic bronchoscopy to collect bronchoalveolar lav-
age fluid (BALF) and the macrophages were collected 
from the BALF. Patients with HIV co-infection, diabe-
tes mellitus, renal abnormality, heart diseases, immune 
response disorders such as lupus erythematosus and 
rheumatoid arthritis, non-TB pulmonary diseases, and 
those who previously received anti-TB treatment were 
excluded. All samples were tested to identify MTBC spe-
cies using polymerase chain reaction (PCR) targeting two 
specific genes: RD9 and TbD1.

Assessment of pulmonary damage
The degree of pulmonary damage was classified using 
the NICE Scoring System based on the total lesions in six 
lung areas [23]. This system assessed four components: 
the nodule (N), the infiltration or consolidation (I), the 
cavity (C), and the ectasis (E) based on chest radiograph 
of three areas of each lung (i.e. six areas of both lungs). 
For each area, the possible scores were 1 to 4 indicating 
the lung damage area of 0–25%, > 25%– ≤ 50%, > 50%– ≤ 
75% and > 75%, respectively. The pulmonary damage was 
then categorized as mild if the total score was 8 or less 
and severe if the total score was more than 8.

Samples collection and macrophages isolation
BAL was performed using 10  ml of saline solution as 
described previously [24]. The BALF was centrifuged at 
2500 rpm for 15 min, the supernatant was discarded, and 
cells were resuspended to a cell count of 4 × 105 cells/ml 
with RPMI 1640 medium. The total cell count was meas-
ured using hemocytometer.

FADD and RIP3 expression by immunocytochemical staining
Pellet cells derived from the centrifugation were applied 
to glass slides and then washed with PBS three times for 
10 min. Permeabilization was performed with a CA-630-
0.5% Igepal solution (Sigma Aldrich, Saint Louis, MO, 
USA).  H2O2 0.3% was then added and incubated for 
10  min before was washed with PBS. The slides were 
incubated with anti-human monoclonal antibody FADD 
or RIP3 followed manufacturer’s protocol (Santa Cruz, 
Oregon, OR, USA). The quantification of the protein 
expression was conducted according to the previous 
study [25].

Apoptosis assay
The level of apoptosis in infected macrophages was 
determined by using the Tunel Assay apoptosis kit per 
manufacturer’s protocol (R&D Systems, Minneapolis, 
MN, USA). Tunel assay was performed with terminal 
deoxynucleotidyl transferase enzymes to determine the 
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fragmentation of DNA. The level of apoptosis was meas-
ured based on the previous study [26].

MTBC Species identification and sequence confirmation
The detection of MTBC species was conducted from the 
BALF. Briefly, DNA was extracted using  DNeasy® Blood 
& Tissue kit (Ambion Inc., Austin, TX, USA). Amplifica-
tion of gene-specific M. tuberculosis was conducted using 
RD9 primers (F: 5′-GTG TAG GTC AGC CCC ATC C-3′, 
I: 5-CAA TGT TTG TTG CGC TGC -3′, R: 5′-GCT ACC 
CTC GAC CAA GTG TT-3′), while M. bovis was identified 
using TbD1 primers (F: 5′-AGT GAC TGG CCT GGT CAA 
AC-3′, R: 5′-GAG CTC TGT GCG ACG TTA TG-3′) [27, 
28]. The conditions for PCR assays were set up for 30  s 
at 94  °C (denaturation), followed by 35 cycles of dena-
turation (94  °C, 30 s), annealing (56  °C, 1  s), and exten-
sion (72 °C, 10 min). The confirmation of the strain was 
conducted by sequencing nine and two of M. tubercu-
losis and M. bovis samples, respectively and the homol-
ogy analysis was conducted using Basic Local Alignment 
Search Tool (BLAST).

Statistical analysis
Associations between MTBC species and the degree of 
lung damage including for each subset of NICE compo-
nent were assessed using Chi squared test. To compare 
the level of apoptosis, FADD, and RIP3 of macrophages 
between M. tuberculosis and M. bovis groups, the Man-
Whitney test was employed. For all analyses, significance 
was assessed at α = 0.05.

Results
Characteristics of patients
Forty new active pulmonary TB patients were success-
fully diagnosed and met the inclusion criteria and 30 
patients were willing to participate and underwent the 
BAL procedure. Among 30 patients, majority of them 
(81.37%) were female and more than half (16/30, 53.3%) 
aged between 21 and 40  years old (Table  1). Majority 
of the patients (75%) were working as laborer and five 
patients (16.6%) were working as cow slaughters. Based 
on clinical symptoms, 90%, 86%, 56% and of the patients 
had anorexia, experienced weight loss, and had persistent 
fever, respectively. Only 36.6% of patients had low hemo-
globin level and 30.0% had low oxygen saturation.

Detection of MTBC species
Based on RD9 gene amplification, 24 (80.0%) M. tuber-
culosis were identified and nine of them were sequenced 
for the confirmation. The isolates had 99–100% sequence 
similarity with the M. tuberculosis Beijing strain 2014 
PNGD (Accession no CP022704.2). Six (20.0%) M. bovis 
were identified and two isolates were sequenced. All of 

them had 100% sequence similarity with M. bovis BCG 
strain (Accession no CP033311.1).

Association between MTBC species and lung damage
MTBC species had no association with three NICE com-
ponents (i.e. the presence of nodule, the infiltrate or con-
solidation, and the cavity of the lungs) (Table 2). Ectasis, 
however, was more frequent in M. tuberculosis (OR: 10.0; 
95% CI 1.34–74.51). M. tuberculosis was identified in 19 
(90.50%) patients with severe lung damage. There was 
a significant association between M. tuberculosis and 

Table 1 Demographic and  clinical characteristics 
between  M. tuberculosis Beijing strain and  M. bovis BCG 
strain

Variable MTBC species p value

M. tuberculosis 
Beijing strain, n 
(%)

M. bovis BCG 
strain, n (%)

Gender

 Female 13 (81.37) 3 (18.8) 0.855

 Male 11 (78.6) 3 (21.4)

Age (year)

 < 21 2 (50.0) 2 (50.0) 0.172

 21–40 12 (75.0) 4 (25.0)

 40–50 6 (100.0) 0 (0)

 > 50 4 (100.0) 0 (0)

Educational attainment

 Elementary school 8 (89.5) 1 (11.1) 0.466

 Junior high school 10 (83.3) 2 (6.7)

 Senior high school 6 (66.7) 3 (33.3)

Occupation

 Labourer 16 (76.2) 5 (32.8) 0.364

 Housewife 6 (100.0) 0 (0)

 Unemployed 2 (66.7) 1 (33.3)

Anorexia

 Yes 21 (77.7) 6 (22.2) 0.189

 No 3 (100.0) 0 (0)

Weight loss

 Yes 21 (80.8) 5 (19.2) 0.364

 No 3 (75.0) 1 (25.0)

Fever

 Yes 13 (76.5) 4 (23.5) 0.167

 No 11 (84.6) 2 (15.4)

Haemoglobin level

 Normal 8 (72.8) 3 (27.3) 0.750

 Low 16 (84.2) 3 (15.8)

SaO2 level

 Normal 17 (80.9) 4 (19.0) 0.831

 Low 7 (77.8) 2 (22.2)
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severe lung tissue damage, OR: 7.60; 95% CI 1.07–54.09, 
p = 0.028 (Table 2).

Association between MTBC species and FADD, RIP3, 
and apoptosis
Our data indicated that the level of FADD was lower in M 
tuberculosis group compared to M. bovis, 0.208 ± 1.020 
vs. 0.667 ± 1.032 cells with p = 0.046 (see Fig.  1a, b). 
The level of RIP3 expression was not different between 
M tuberculosis group and M. bovis (0.333 ± 0.702 vs 
0.500 ± 0.836, p = 0.551). Data from Tunel assay indicated 
that the level of apoptosis in macrophages derived from 
M tuberculosis group was significantly lower compared to 
M. bovis group, 0.875 ± 1.676 vs. 2.500 ± 3.331, p = 0.049 
(Fig. 1c, d).

Discussion
The outcome and the disease progression of MTBC 
species infection are varied; exposure to this myco-
bacterium can be rapidly cleared by innate immunity 
or direct progression to active TB. Active TB also has 
a range of presentations and each form is associated 
with diverse host responses to the pathogen. Stud-
ies have provided evidence that different MTBC spe-
cies is associated with different virulent [29–31] and 
would affect host–pathogen interactions [32]. Phe-
notypic comparisons between M. tuberculosis and M. 
bovis have been limited to animal studies, which sug-
gested that M. bovis is likely less virulent [9, 33, 34]. 

In the present study, 80.0% of TB cases caused by M. 
tuberculosis and inhibited the cell signaling to apopto-
sis execution. The previous studies have reported that 
high virulent M. tuberculosis inhibited apoptosis in 
TB-cases [35, 36]. Virulent M. tuberculosis H37Rv and 
Erdman for example inhibited apoptosis stronger com-
pared to non-virulent M. bovis BCG strain, H37Ra, 
and M. kansaii on human alveolar macrophages of 
healthy nonsmoking volunteers [36]. Other studies 
found that M. tuberculosis inhibited and suppressed 
apoptosis of host macrophages on THP-1 [37, 38] and 
J774 cell lines [39].

Data from the present study identified that infection 
of macrophages with M. tuberculosis was associated 
with a lower level of FADD compared to M. bovis infec-
tion. FADD is an adapter protein to bind caspase 8 and 
caspase 10 precursors and is simultaneously activated 
and mediated cell signals with caspases 3, 6, and 7 to 
induce apoptosis [40]. This suggests that M. tuberculo-
sis is able to inhibit signaling of caspases to execute the 
apoptosis. A study showed that low FADD expression 
triggered the necrosis [41] and the necroptosis [42]. 
Altogether, these explain, in part, the finding of present 
study that M. tuberculosis infection was significantly 
associated with severe lung damage.

In conclusion, our preeliminary data suggest that M. 
tuberculosis is associated with more severe lung dam-
age compared to M. bovis infection. M. tuberculosis 
also inhibits FADD expression and reduces the apopto-
sis level.

Table 2 Severity of pulmonary damage between M. tuberculosis Beijing strain and M. bovis BCG strain

Variables n MTBC species OR 95% CI p-value

M. tuberculosis Beijing 
strain, n (%)

M. bovis BCG strain, 
n (%)

NICE score

 Nodule 4.85 0.72–32.87 0.088

  Yes 19 17 (89.5) 2 (10.5)

  No 11 7 (63.7) 4 (36.4)

 Infiltrate/consolidation NA NA NA

  Yes 30 24 (80.0) 6 (20.0)

  No 0 0 (0.0) 0 (0.0)

 Cavitas NA NA 0.283

  Yes 4 4 (100.0) 0 (0.0)

  No 26 20 (76.9) 6 (23.1)

 Ectasis 10.00 1.34–74.51 0.013

  Yes 22 20 (90.0) 2 (9.15)

  No 8 4 (50.0) 4 (50.0)

 Severity of lung damage 7.60 1.07–54.09 0.028

  Mild 9 5 (9.5) 4 (55.6)

  Severe 21 19 (90.5) 2 (44.4)
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Study limitation
This was a cross-sectional study at a single health 
center and included small number of pulmonary TB 
patients determined to be infected predominantly with 
M. tuberculosis Beijing strains. Therefore, our study 
was underpowered, which lessened its internal valid-
ity. In this study, the FADD expression was used which 
may not be the best marker for propensity towards 
apoptosis or necrosis. Therefore, validation using other 
standard approaches such as caspase-activity and RIP3 
phosphorylation is warrant. Finally, we did not assess 
the necrosis state of the cells and further study to anal-
ysis the role of MTBC species on necrosis is therefore 
also important.
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