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Abstract 

Objectives:  Phytohormones are small signaling molecules with crucial roles in plant growth, development, and 
environmental adaptation to biotic and abiotic stress responses. Despite several previously published molecular stud‑
ies focused on plant hormones, our understanding of the transcriptome induced by phytohormones remains unclear, 
especially in major crops. Here, we aimed to provide transcriptome dataset using RNA sequencing for phytohormone-
induced signaling in plant.

Data description:  We used high-throughput RNA sequencing profiling to investigate the pepper plant response 
to treatment with four major phytohormones (salicylic acid, jasmonic acid, ethylene, and abscisic acid). This dataset 
yielded 78 samples containing three biological replicates per six different time points for each treatment and the con‑
trol, constituting 187.8 Gb of transcriptome data (2.4 Gb of each sample). This comprehensive parallel transcriptome 
data provides valuable information for understanding the relationships and molecular networks that regulate the 
expression of phytohormone-related genes involved in plant developments and environmental stress adaptation.
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Objective
Plants are sessile beings, which are exposed to various 
attacks from the environment involving biotic/abiotic 
stress conditions [1, 2]. Besides, plants interact with posi-
tive effects from plant-associated microbes which induce 
phytohormones so that strengthen plants to withstand 
stresses. In response to these physiological processes, 
different signaling pathways of plant hormones are acti-
vated. Infection of plants with diverse pathogens results 

in changes in the level of various phytohormones. Three 
phytohormones—salicylic acid (SA), jasmonic acid (JA) 
and ethylene (ET), are known to regulating plant defense 
responses against various pathogens, pests and abiotic 
stresses. Abscisic acid (ABA) exert opposite defense 
effect from these hormones, but can also enhance disease 
resistance [3, 4]. These phytohormones tend to act inter-
dependently through complex antagonistic or synergistic 
interactions [5]. These relationships reveal that important 
networks of phytohormone crosstalk exist to mediate 
physiological processes such as biotic, abiotic stress tol-
erance, and plant growth.

Despite several previously reported molecular studies 
focused on plant hormones, the transcriptome informa-
tion of phytohormones remains unclear, especially in 
major crops [6, 7]. Recently a few genes and gene fami-
lies regulated by phytohormones have been identified 
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in pepper [8–10], but a time-series investigation of the 
well-regulated transcriptome network has yet to be per-
formed. Accordingly, this study aimed to provide tran-
scriptome dataset using RNA sequencing (RNA-seq) for 
transcriptome dataset of phytohormone-induced sign-
aling in pepper plant. In this study, we performed tran-
scriptome analysis of pepper treated with four major 
phytohormones, namely SA, JA, ET, and ABA, at six time 
points. Total 78 RNA samples were subjected to RNA-
seq by constructing strand-specific RNA libraries, and 
187.8  Gb of transcriptome data were produced. These 
transcriptomic profiles will contribute to our under-
standing of the phytohormone-induced signaling path-
ways involved in response to environmental stresses and 
plant development in pepper and other crops.

Data description
Plant materials and treatment
Pepper seeds (C. annuum cv. Bukang) were sown on petri 
dish lined with a wet tissue layer for 2 weeks. After ger-
mination, seedlings were transplanted into a 32-cell plug 
seedling tray and grown at 24 ± 1  °C with an alternating 
16-h light/8-h dark photoperiod. At the 6-true-leaf stage, 
pepper plants were sprayed with 5  mM sodium salicy-
late (SA), 100  μM methyl jasmonate (JA), 5  mM ethe-
phone (ET), 100 μM ( ±)-ABA, or distilled water (mock) 
[11–14]. Each was treated and incubated in the growth 
chamber separately to avoid cross-contamination. After 
treatment, the third or fourth leaf was collected at 0, 1, 
3, 6, 12, and 24 h post-inoculation, and frozen with liquid 
nitrogen immediately prior to storage at − 80  °C. Each 
treatment time point was performed for three biological 
replicates, and leaves from four healthy plants were gath-
ered for a replicate.

RNA extraction, library construction, and sequencing
Following phytohormone inoculation, total RNA 
from pepper leaves was extracted using Trizol reagent 
(Ambion, USA) according to the manufacturer’s instruc-
tions. To confirm the phytohormone response for each 
treatment, semi-quantitative RT-PCR was performed 
using gene primers such as SA (CaPR1), JA (CaPin2), ET 
(CaACO), and ABA (CaWRKY40) [13–16]. Expression 
levels were normalized with the CaActin [17] and the 
mock group was used as a control (Data file 1).

Samples of total RNA (5  μg) were used to prepare 
strand-specific libraries as described previously [18, 19]. 
In brief, from each total RNA, the Poly-(A) RNA was cap-
tured and fragmented by the size of 300 to 400 bp. The 
RNA fragments were generated second-strand cDNA, 
and then performed end-repair, dA tailing, adapter liga-
tion and PCR amplification. We generated total 78 cDNA 
libraries consisting of four treatment groups and a mock 
control group, for transcriptome profiling. Strand-
specific RNA libraries were sequenced using the 151nt 
paired-end on the HiSeq2500 platform (Illumina, USA) 
at Macrogen Corporation (Korea) (Table 1).

Quality control and quantification of gene expression
The adapter filtering and quality trimming was per-
formed on a total of 78 RNA libraries using the Cuta-
dapt and Trimmomatic programs, respectively [20–22]. 
The read length of each sample was filtered by QC and 
the read length was 28.87–6.07 Gb (Data file 2). After fil-
tering, the quality of pre-processed reads were checked 
using FastQC [23] and the output was merged using 
MultiQC (Data file 3) [24]. Read mapping was carried 
out with the C. annuum ‘CM334’ reference genome 
v.1.6 (https​://peppe​rgeno​me.snu.ac.kr) using Hisat2 
[25]. Transcriptome quantification was performed using 

Table 1  Overview of data files/data sets

Label Name of data file/data set File types (file extension) Data repository and identifier (DOI or accession 
number)

Data set 1 Comprehensive transcriptome profiling for response 
to phytohormone-induced signaling in Capsicum 
annuum L.

fastq (.fastq) Sequence Read Archive (https​://ident​ifier​s.org/ncbi/
insdc​.sra:SRP26​5260)

Data set 2 Comprehensive transcriptome profiling for response 
to phytohormone-induced signaling in Capsicum 
annuum L.

text (.txt) Gene Expression Omnibus (https​://ident​ifier​s.org/
geo:GSE14​9037)

Data file 1 Data file 1. Schematic workflow of experimental 
design and bioinformatics analysis in this study

Adobe acrobat file (.pdf ) Figshare (https​://doi.org/10.6084/m9.figsh​are.12319​
337.v6)

Data file 2 Data file 2. Statistical summary of RNA-seq with SRA 
accession numbers for each treatment

MS Excel file (.xlsx) Figshare (https​://doi.org/10.6084/m9.figsh​are.12319​
337.v6)

Data file 3 Data file 3. Quality assessment metrics for RNA-seq 
data

Adobe acrobat file (.pdf ) Figshare (https​://doi.org/10.6084/m9.figsh​are.12319​
337.v6)

Data file 4 Data file 4. Normalized FPKM MS Excel file (.xlsx) Figshare (https​://doi.org/10.6084/m9.figsh​are.12319​
337.v6)

https://peppergenome.snu.ac.kr
https://identifiers.org/ncbi/insdc.sra:SRP265260
https://identifiers.org/ncbi/insdc.sra:SRP265260
https://identifiers.org/geo:GSE149037
https://identifiers.org/geo:GSE149037
https://doi.org/10.6084/m9.figshare.12319337.v6
https://doi.org/10.6084/m9.figshare.12319337.v6
https://doi.org/10.6084/m9.figshare.12319337.v6
https://doi.org/10.6084/m9.figshare.12319337.v6
https://doi.org/10.6084/m9.figshare.12319337.v6
https://doi.org/10.6084/m9.figshare.12319337.v6
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HTseq-count [26] to calculate the read counts. The clean 
reads were mapped to the coding DNA sequence with 
65.75–70.36% and the genome with 92.13 –96.04% (Data 
file 2). Raw read count was normalized to FPKM and vis-
ualized with the distribution (Data files 3, 4). The princi-
pal component analysis (PCA) with normalized data was 
used to examine sample variation (Data file 3) [27, 28]. 
The comparisons between PC1 and PC2 (SA, ET) or PC1 
and PC3 (JA, ABA) indicated that the mock and phyto-
hormone-treated groups were separated clearly.

Limitations
Raw data was deposited in NCBI, and quality filtering 
is required before use. The transcriptome data was gen-
erated using C. annuum cv. Bukang, and read mapping 
was carried out with C. annuum cv. CM334 reference 
genome.

Abbreviations
ABA: Abscisic acid; ET: Ethylene; FPKM: Fragments per kilobase of transcripts 
per million mapped reads; PCA: Principal component analysis; QC: Quality 
control; RNA-seq: RNA sequencing; RT-PCR: Reverse transcription polymerase 
chain reaction; SA: Salicylic acid.
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