
Horowitz et al. BMC Res Notes          (2020) 13:455  
https://doi.org/10.1186/s13104-020-05298-6

RESEARCH NOTE

Effect of dapsone alone and in combination 
with intracellular antibiotics against the biofilm 
form of B. burgdorferi
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Abstract 

Objective:  Lyme disease is a tick-borne, multisystemic disease caused by Borrelia burgdorferi. Standard treatments for 
early Lyme disease include short courses of oral antibiotics but relapses often occur after discontinuation of treat-
ment. Several studies have suggested that ongoing symptoms may be due to a highly antibiotic resistant form of B. 
burgdorferi called biofilms. Our recent clinical study reported the successful use of an intracellular mycobacterium 
persister drug used in treating leprosy, diaminodiphenyl sulfone (dapsone), in combination therapy for the treatment 
of Lyme disease. In this in vitro study, we evaluated the effectiveness of dapsone individually and in combination 
with cefuroxime and/or other antibiotics with intracellular activity including doxycycline, rifampin, and azithromycin 
against Borrelia biofilm forms utilizing crystal violet biofilm mass, and dimethyl methylene blue glycosaminoglycan 
assays combined with Live/Dead fluorescent microscopy analyses.

Results:  Dapsone, alone or in various combinations with doxycycline, rifampin and azithromycin produced a signifi-
cant reduction in the mass and protective glycosaminoglycan layer and overall viability of B. burgdorferi biofilm forms. 
This in vitro study strongly suggests that dapsone combination therapy could represent a novel and effective treat-
ment option against the biofilm form of B. burgdorferi.
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Introduction
Lyme disease is the number one vector-borne illness in 
the United States caused by B. burgdorferi species and 
transmitted via the bite of Ixodes ticks [1–3]. Success-
ful frontline treatments for early Lyme disease involve 
using antibiotics including doxycycline, amoxicillin, 
cefuroxime axetil, and ceftriaxone [4–7]. Although stand-
ard antibiotic therapy is effective in most cases of early 
Lyme disease [5], CDC reports suggest that greater than 
10–20% of Lyme patients who have been treated for an 
Erythema migrans (EM) rash, a classical early manifesta-
tion of Lyme disease, continue to experience symptoms 

of fatigue, musculoskeletal pain, and cognitive impair-
ment despite appropriate treatment [8–13].

Several theories to explain persistent symptoms have 
been suggested, including immune evasion in privi-
leged sites [14], antigenic variation [15], persistent anti-
genic stimulation [16], biofilm formation [17, 18] and 
B. burgdorferi persister cells, a highly resistant bacterial 
form which may protect the bacteria from antibacterial 
therapy. B. burgdorferi can exist in spirochetal, round 
body forms, intracellularly, as well as in newly discovered 
biofilm forms [4, 19–29]. Previous data suggested that 
standard and some newly discovered antibiotics for Lyme 
disease can be very effective in eliminating spirochetal, 
round body, intracellular and antibiotic tolerant persister 
cells [4, 20, 25–27] but have little effect on biofilm forms 
[24, 30]. Persisters are multi-drug tolerant cells present in 
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significant numbers in biofilms [27, 29], and the impor-
tance of Borrelia biofilms has been highlighted in autopsy 
tissues from a well-documented Lyme disease patient 
[31]. Therefore, to successfully treat Lyme disease, there 
is an urgent need to find an agent or combination of anti-
microbial agents which can efficiently eliminate resistant 
biofilm forms of B. burgdorferi.

Dapsone combination therapy (DDS CT) is clinically 
effective as a novel drug regimen for the treatment of 
chronic Lyme disease as reported in 100 patients who had 
previously failed commonly prescribed antibiotic thera-
pies [32]. A recent retrospective study among a larger 
group of 200 patients also found that dapsone (DDS) 
combined with other intracellular antibiotics including 
doxycycline, rifampin, and/or azithromycin was effec-
tive in reducing 8 major Lyme disease symptoms [33, 
34]. Although dapsone combination therapy was clini-
cally effective, its efficacy against different morphologi-
cal forms of B. burgdorferi in culture had not yet been 
fully studied. In a previous 2017 study, Feng et al. com-
pared the efficacy of sulfa drugs including dapsone, sul-
famethoxazole, sulfachlorpyridazine, and assessed their 
combinations along with commonly prescribed Lyme 
antibiotics for their activity against B. burgdorferi “per-
sisters” and found that dapsone was the most active drug 
among the 3 sulfa drugs [35]. However, this study did not 
evaluate the effect of any of the sulfa drugs on attached 
B. burgdorferi biofilm. We therefore designed an in vitro 
study using dapsone as a single drug and/or in combina-
tion with cefuroxime axetil and/or other antibiotics with 
intracellular activity including doxycycline, rifampin and 
azithromycin in order to find the most effective combi-
nations to effectively eliminate resistant biofilm forms of 
Borrelia burgdorferi.

Main text
Methods
Bacteria culture conditions
Low passage isolates of B. burgdorferi, B31 strain were 
obtained from ATCC (#35,210, Manassas, VA) and cul-
tured in Barbour-Stoner-Kelly H (BSK-H) media (Sigma, 
St Louis, MO) supplemented with 6% rabbit serum (Pel-
Freez®, Rogers, AR). The stock cultures were maintained 
in sterile 15 ml glass tubes and incubated at 33  °C with 
5% CO2 in the absence of antibiotics. Spirochetes for 
surface attached biofilms were seeded at 5 × 106  cells/
ml in 4-well Permanox chamber slides (Thermo Scien-
tific, Waltham, MA) or in 48-well sterile tissue culture 
plates (BD Falcon, Franklin Lakes, NJ) for 5 days to estab-
lish attached biofilm form. Floating spirochetal cells and 
aggregates from the supernatant were removed to ensure 
only surface attached biofilms would be analyzed.

Antibiotics
All antibiotics were prepared in standard 1 × phosphate 
buffered saline solution (PBS) and sterilized using 0.2 µm 
filter unit (EMD Millipore, Billerica, MA). As a negative 
control, 1 × PBS was used which was the diluent for anti-
microbial compounds studied.

Crystal violet biofilm, Baclight LIVE/DEAD viability, 
Dimethylmethylene blue glycosaminoglycan (DMMB) 
assays.

The effect of the antimicrobial agents on B. burgdorferi 
biofilm mass and viability was evaluated by using a crys-
tal violet assay and LIVE/DEAD microscopic analyses 
respectively as described earlier [30]. The effectiveness of 
the antibiotic combinations on the B. burgdorferi biofilms 
was also determined by quantifying the biofilm polysac-
charide matrix content, glycosaminoglycans (GAG) as 
described [36].

Statistical analysis
Quantitative results were analyzed using the median 
value of all the readings from antimicrobial screens in 
addition to a two-tailed Student’s t -test (Microsoft Excel, 
Redmond, WA, USA). All experiments were performed 
a minimum of five independent times with at least four 
replicates per each experimental condition (N = 20). Each 
experiment was repeated by two different scientists (GG 
and KM) and statistical analyses were conducted inde-
pendently by a third (ES).

Results
In this study, we compared and evaluated the antimi-
crobial effect of dapsone along with the other clinically 
tested antibiotics (doxycycline, rifampin, azithromycin, 
cefuroxime) on the growth and viability of attached B. 
burgdorferi biofilms using standard crystal violet biofilm 
mass and dimethylmethylene blue glycosaminoglycan 
assays combined with BacLight Live/Dead microscopic 
analysis. As in the previous studies from our group and 
others [30, 35], we tested two different antibiotic concen-
trations (10 µM and 50 µM) against attached B. burgdor-
feri biofilm structures. The 10 µM in vitro concentration 
corresponds well to the achievable serum level after 
administration of the antibiotics tested in this study [37–
41]. Recent studies showed however that higher 50  µM 
concentrations for these antibiotics could be very effec-
tive against persister cells [27, 35], therefore this higher 
concentration was also tested.

First, the effectiveness of the single and combination 
antibiotic treatments on attached Borrelia biofilm was 
quantified by crystal violet biofilm mass assay after 72 h 
treatments with various antibiotics. The most significant 
results were achieved with individual and combination 
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treatments with dapsone, as listed in Table  1. The best 
reduction in biofilm mass by a single antibiotic was 
achieved with dapsone at 10 µM and 50 µM concentra-
tions resulting in 69% and 58% residual viability respec-
tively, when compared to the PBS treated control (p 
value < 0.01). Rifampin at both 10  µM and 50  µM con-
centrations also resulted in a significant decrease in 
biofilm mass (76% and 60% respectively, p values < 0.01) 
compared to the PBS treated negative control sam-
ples, although not quite as effective as dapsone alone at 
comparable concentrations. Treatments with other sin-
gle antibiotics including doxycycline, cefuroxime, and 
azithromycin were less effective and, in some cases, even 
increased biofilm size when compared to the PBS treated 
control (Table 1).

The most effective dual combination was dap-
sone + doxycycline at both 10  µM and 50  µM concen-
trations (68% and 65% residual viability respectively) 
significantly decreasing biofilm size compared to the PBS 
treated control (p value < 0.01; Table  1). However, when 
compared to dapsone alone treated samples, this dual 
combination was not more effective than dapsone alone 
(p value > 0.05).

The triple combination treatment of dap-
sone + doxycycline + rifampin (52% residual 
viability) and quadruple combination of dapsone + dox-
ycycline + rifampin + azithromycin (58% residual via-
bility) treatments both at 50 µM concentration were the 
most effective when compared to the PBS treated con-
trol (p values < 0.01), however, the effect of three and 

four drug combinations at 50 µM was not significantly 
better than the 50 µM concentration treatments of dap-
sone alone or dapsone + doxycycline (p values > 0.05).

Crystal violet biofilm assay only measures the cellular 
mass (both live or dead) and does not provide informa-
tion about the viability and the individual sizes of the 
antibiotic treated biofilm aggregates. Therefore, Live/
Dead fluorescent microscopy techniques were used to 
visualize the effect of the most effective single and com-
bination treatments after 72  h with different antibiotics 
and represented images are presented in Fig.  1. Biofilm 
cultures treated only with PBS show live (green) and 
compact morphology (Fig.  1a, b). For single and dual 
antibiotic treatments, the microscopy data were in good 
agreement with the crystal violet data. For example, it 
confirmed that single treatment dapsone (Fig.  1c) and 
dual treatment dapsone + doxycycline (Fig.  1h) were 
indeed effective in reducing Borrelia biofilm size, result-
ing in very small aggregates (less than 20 µm aggregates 
[Fig. 1c]).

However, for triple and quadruple antibiotic treat-
ments, such as dapsone + doxycycline + rifampin and 
dapsone + doxycycline + rifampin + azithromycin, the 
microscopy images suggest a more significant effect of 
these triple and quadruple combinations than dapsone 
or dapsone + doxycycline as demonstrated by very small 
(less than 10  µm) and disorganized biofilms structures 
(Fig. 1k, l).

In order to further evaluate the effectiveness of the 
antibiotics on the attached biofilm form of B. burgdorferi, 

Table 1  Effect of  different antibiotic treatments on  attached B. burgdorferi biofilm mass at  10  µM and  50  µM 
concentration evaluated with crystal violet biofilm assay after 72 h

Table summarizes the mean % of residual viability with ± SD compared to the PBS treated control. N = 20

DDS dapsone, DOXY doxycycline, RIF rifampin, CEF cefuroxime, AZ azithromycin

Antibiotics single 10 µM residual 
%  ± %SD

50 µM residual 
%  ± %SD

Antibiotics dual 
combinations

10 µM residual 
%  ± %SD

50 µM residual  ± %SD

Control (PBS) 100% 100% Control (PBS) 100% 100%

DDS 69% ± 5.1 58% ± 4.7 DDS + DOXY 68% ± 5.3 65% ± 4.6

DOXY 107% ± 8.2 103% ± 11.6 DDS + RIF 82% ± 7.6 71% ± 5.6

RIF 76% ± 4.3 60% ± 8.9 DDS + AZ 106% ± 9.1 93% ± 7.3

CEF 109% ± 8.6 102% ± 9.5 DDS + CEF 83% ± 7.3 101% ± 10.3

AZ 101% ± 7.4 91% ± 7.9 DOXY + RIF 73% ± 5.8 74% ± 6.5

Antibiotics triple 
combinations

10 µM residual 
%  ± %SD

50 µM residual 
%  ± %SD

Antibiotics quadruple 
combinations

10 µM residual 
%  ± %SD

50 µM residual 
%  ± %SD

Control (PBS) 100% 100% Control (PBS) 100% 100%

DDS + DOXY + RIF 78% ± 5.8 52% ± 4.1 DDS + DOXY + RIF + CEF 72% ± 5.2 79% ± 6.2

DDS + DOXY + CEF 65% ± 4.2 60% ± 8.8 DDS + DOXY + RIF + AZ 78% ± 5.4 58% ± 3.5

DDS + DOXY + AZ 80% ± 7.7 72% ± 6.5 DDS + RIF + AZ + CEF 81% ± 6.8 68% ± 5.5

DDS + RIF + AZ 69% ± 4.2 77% ± 8.5 DOX + RIF + AZ + CEF 98% ± 8.5 82% ± 5.1

DDS + RIF + CEF 70% ± 5.6 62% ± 5.6
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the amount of the protective layers of biofilm polysaccha-
ride matrix of these aggregates were measured using the 
DMMB glycosaminoglycan (GAG) assay before and after 
72  h antibiotic treatments. Biofilms treated with nega-
tive control, PBS, showed no reduction in the amounts 
of GAG, when compared with the untreated biofilm 
control. The most significant results with the different 
single and combination of antibiotics are summarized in 
Table 2. Single antibiotic treatments at 10 µM of rifampin 
and doxycycline were the most effective resulting in 
75% and 76% residual GAG amounts compared to the 
PBS treated control (p value < 0.01). However, at 50 µM, 
dapsone showed the most significant effects with 68% 
residual GAG amounts of Borrelia biofilm compared to 
the untreated control (p value < 0.01). For combination 
therapies, dapsone + doxycycline + rifampin at 10  µM 
and dapsone + doxycycline + rifampin + azithromycin at 
50  µM were the most effective agents when compared 
with the untreated control with 69% and 62% residual 
GAG amounts respectively. The 50 µM quadruple com-
bination data were found to be significant not just in 
comparison to the negative control but to any single 
treatment result (p value < 0.05).

Fig. 1  Representative Live/Dead images of the attached B. burgdorferi biofilms following a 72 h treatment with different antimicrobial agents at 
10 µM. Biofilms were analyzed by LIVE/DEAD assay as outlined in the Methods and representative images were taken at 100X magnification. Scale 
bar: 100 μm

Table 2  Effect of  different antibiotic treatments 
on  attached B. burgdorferi biofilm glycosaminoglycan 
(GAG) content at  50  µM concentration 
evaluated with  Dimethylmethylene Blue Assay 
for Glycosaminoglycan after 72 h

The table summarizes that mean % of the residual GAG amounts with ± SD 
compared to the PBS treated control. N = 20

DDS dapsone, DOXY doxycycline, RIF rifampin, CEF cefuroxime, AZ azithromycin

Antibiotics 10 µM GAG % ± %SD 50 µM GAG % ± %SD

Control (PBS) 100% 100%

DDS 79% ± 5.8 68% ± 3.6

DOXY 76% ± 4.2 73% ± 7.2

RIF 75% ± 6.3 70% ± 5.8

CEF 78% ± 5.2 76% ± 7.4

AZ 82% ± 6.6 79% ± 8.2

DDS + DOXY 70% ± 8.2 69% ± 5.3

DDS + DOXY + RIF 69% ± 4.2 70% ± 7.3

DDS + DOXY + RIF + AZ 75% ± 6.8 62% ± 5.4
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Discussion
The major findings from this study are that dap-
sone, as a single drug and in combination with 
doxycycline and doxycycline + rifampin as well as doxy-
cycline + rifampin + azithromycin had the most signifi-
cant effect in reducing the mass and viability as well the 
protective mucopolysaccharide layers of B. burgdorferi 
biofilm. These findings might explain at least in part its 
clinical efficacy seen in recent DDS CT trials [32–34].

In order to eliminate the most resistant forms of B. 
burgdorferi, there is a need for safe and effective drugs 
that are able to eliminate all morphological forms of B. 
burgdorferi including attached biofilm forms [24, 30]. 
Our recent clinical studies reported that DDS combina-
tion therapy [DDS with rifampin and a tetracycline (dox-
ycycline, minocycline) and/or a macrolide (azithromycin, 
clarithromycin) and/or cephalosporin (cefuroxime axe-
til)] improved symptoms of fatigue, muscle/joint pain, 
neuropathy, disturbed sleep, cognitive complaints, and 
sweats and/or flushing [32–34].

A recent study [35] evaluated DDS for activity against 
persisters and found it was not only the most active sulfa 
drug but exhibited in vitro superiority to other antibiot-
ics including rifampin, azithromycin, and minocycline. 
Unfortunately, these researchers did not evaluate DDS 
combinations against attached B. burgdorferi biofilm, 
the most antibiotic resistant form in vitro [24, 30] and a 
dominant form in a human autopsy study from a Lyme 
disease patient [31]. Furthermore, a recent mouse model 
study [42] showed that the biofilm like microcolony and 
stationary phase planktonic forms (free cells) caused 
more severe Lyme arthritis with an earlier onset of 
inflammation and joint swelling than the log phase spi-
rochetes. Therefore, addressing biofilm forms is vital, and 
for that reason in this study, we added several assays to 
evaluate dapsone alone and in combination on B. burg-
dorferi biofilms. We found that dapsone as a single agent 
is very effective in reducing the attached biofilm forms, 
and that dapsone combination therapy (DDS CT) with a 
tetracycline, rifampin and/or macrolide had a more sig-
nificant effect on reducing the mass and viability as well 
the protective mucopolysaccharide layers of highly resist-
ant B. burgdorferi biofilm.

Conclusion
Results from this study verify that dapsone alone and in 
combination with other antibiotics is effective in reduc-
ing the antibiotic resistant biofilm forms of B. burgdor-
feri and support the in  vitro effectiveness of DDS CT. 
Two prior published retrospective studies using DDS 
CT also showed clinical efficacy in relieving eight major 
Lyme symptoms. Considering the worldwide spread of 

borreliosis and significant numbers of individuals with 
persistent Lyme symptoms, prospective randomized 
trials are urgently required to evaluate the clinical effi-
cacy of DDS CT.

Limitations
This study evaluated the antibiotic sensitivity of the 
B. burgdorferi B31 laboratory strain and needs to be 
repeated with other Bb sensu lato strains as well to 
evaluate efficacy.

Abbreviations
CDC: Centers for Disease Control and Prevention; DDS: Dapsone; DDS CT: 
Dapsone combination therapy; DMMB: Dimethylmethylene blue glycosami-
noglycan; EM: Erythema migrans; GAG​: Glycosaminoglycan; PBS: Phosphate 
buffered saline.
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