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Abstract 

Objective:  Passalora sequoiae (family Mycosphaerellaceae) causes a twig blight on Leyland cypress that requires 
numerous fungicide applications annually to minimize economic losses for ornamental plant nursery and Christmas 
tree producers. The objective was to generate a high-quality draft assembly of the genome of P. sequoiae as a resource 
for primer development to investigate genotype diversity.

Data description:  We report here the genome sequence of P. sequoiae 9LC2 that was isolated from Leyland cypress 
‘Leighton Green’ in 2017 in southern Mississippi, USA. The draft genome was obtained using Pacific Biosciences 
(PacBio) SMRT and Illumina HiSeq 2500 sequencing. Illumina reads were mapped to PacBio assembled contigs to 
determine base call consistency. Based on a total of 44 contigs with 722 kilobase (kb) average length (range 9.4 kb to 
3.4 Mb), the whole genome size was estimated at 31,768,716 bp. Mapping of Illumina reads to PacBio contigs resulted 
in a 1000 × coverage and were used to confirm accuracy of the consensus sequences.
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Objective
Passalora sequoiae (Ellis & Everh.) Y.L. Guo & W.H. 
Hsieh (syn. Cercosporidium sequoiae (Ellis and Everh.) 
Baker and Partridge) is a fungus that causes needle blight 
on genera in the Cupressaceae, mainly Leyland cypress (x 
Cupressocyparis leylandii) [1, 2]. Disease symptoms of 
brown to gray needles appear during the spring and pro-
gressively appear throughout the tree canopy to result in 
unmarketable trees (Fig. 1). Annual fungicide application 
and crop loss inflict significant costs on the ornamental 
tree and Christmas tree industries [3–5].

The objective of this work was to sequence the whole 
genome of P. sequoiae using PacBio and Illumina to 

assemble contigs. A lack of genetic information for this 
fungus prevents utilization of genetic tools to determine 
genetic diversity of isolates, potential differences in viru-
lence, and ultimately the development of control prac-
tices. Currently, only three entries are listed for Passalora 
spp. in GenBank (NCBI), corresponding to the 18S rDNA 
gene of this fungus, a total of 5476 base pairs (bp).

A problem in sampling P. sequoiae populations is that 
numerous dematiaceous hyphomycetes with morpho-
logically similar conidia and conidioma are found in 
many regions (Figs.  2 and 3). Proper identification of 
these organisms is further complicated by the numer-
ous name revisions over the last two decades [1, 6–12]. 
A further constraining factor is that only a small num-
ber of dematiaceous hyphomycetes have been included 
in genetic phylogenies using DNA loci, mRNA and pro-
teins [7, 10–20]. Mycosphaerellaceae was recently nar-
rowed to 120 genera based on phylogenetic data [12].
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Data description
A single spore isolate of P. sequoiae 9LC2 was recov-
ered from a Christmas tree near Hattiesburg, MS, USA. 
DNA was extracted [21] and sheared to approximately 
20  kb fragments. SMRTbell library was prepared, then 
sequenced on a PacBio Sequel sequencer at USDA-ARS, 
Stoneville, MS, USA. Bam files were processed using Fin-
ishing Module 20.0 of CLC_Bio Workbench v.12 (Qia-
gen LLC, Hilden, Germany). A total of 519,499 subreads 
with 6,612,712,889 nucleotides (nt) total, average length 
14,247 nt, N50 21,720, were generated. Subreads were 
corrected and de novo assembled. The initial 19 contigs 
were manually split when necessary, rendering 44 con-
tigs of 722,016 nt average and 44 x coverage. A total of 
244,368,646 reads with an average length of 148 nt after 
trimming were obtained from Illumina sequencing. 
These reads were mapped to the PacBio assembled con-
tigs resulting in 1011 x average coverage. A small per-
centage of gaps, 2–4 nt in length, approximately 2–3 gaps 
every 150,000 nt were observed using Illumina reads on 
the PacBio assembly, and they corresponded to microsat-
ellites; thus, in all cases, the PacBio assembly was chosen 
(Table 1). 

Basic Local Alignment Search Tool (BLAST) [22] of 
a 9360 nt contig containing the 18S rDNA gene and 

internal transcribed spacers of P. sequoiae isolate 9LC2 
showed a 99.65% identity with the 5476 nt NCBI entry 
Passalora sequoiae GU214667.1 [10]. The 5476  bp 
region of 9LC2 was used to retrieve 20 closely related 
sequences with 100% coverage. A Neighbor Joining 
[23] phylogenetic radial tree was constructed [24] using 
CLC Genomics Workbench 20.0 (Fig.  4), using NCBI 
accessions: GU214655.1; GU214656.1; GU214658.1; 
GU214661.1; GU214662.1; GU214664.1; GU214665.1; 
GU214666.1; GU214667.1; GU214668.1; GU214670.1; 
GU214671.1; GU214673.1; GU214678.1; GU214684.1; 
GU214686.1; GU214688.1; GU214697.1; GU214698.1; 
GU214699.1. Passalora sequoiae 9LC2 showed 99.7% 
identity to P. sequoiae CPC 11258, and 99.2 identity to 
P. brachycarpa CBS 115124. Though the taxonomy of 
Passalora is still being debated [12], P. sequoiae 9LC2 
grouped with previously reported Passalora spp.

Fig. 1  Leyland cypress tree showing Passalora twig blight symptoms

Fig. 2  Infected Leyland cypress leaf with sporulating conidioma of 
Passalora sequoiae 

Fig. 3  Conidia of Passalora sequoiae 
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Structural annotation of the genome assembly was 
determined using MAKER v.2.31.8 [25]. The MAKER 
pipeline included programs 1) RepeatMasker v.4.0.6 
[26] to mask interspersed repeats and low complexity 
DNA sequences; 2) three gene predictors: GeneMark-
ES [27]; SNAP [28], trained with Sordariomycetidae 
proteins from the Uniprot database; and Augustus [29]; 
and 3) tRNAscan [30] to identify tRNA genes in the 
genomic sequence. The total number of genes identi-
fied by Maker was 10,657. Of those, 10,576 genes were 
predicted to have proteins ≥ 50 amino acids. Maker 
also identified 81 tRNA and 3.42% of the genome cor-
responded to short repetitive sequences.

DbCAN2 [31] identified 331 predicted proteins 
that had signatures as carbohydrate active enzymes 

(CAZymes). Of those 52, 9, 186, 3, 79 and 9 corre-
sponded to auxiliary activity enzymes, carbohydrate 
esterases, glycoside hydrolases, polysaccharide lyases, 
glycosyl transferases and carbohydrate binding mod-
ules, respectively. Thirty-four proteins had blast hits to 
the phi-database [32].

This whole-genome project has been deposited in 
DDBJ/ENA/GenBank under the accession number 
WSQC00000000 [33]. The version described in this 
paper is the first version, WSQC01000000.

Limitations
The genome sequence of a single isolate of P. sequoiae 
is being reported; thus, sequences of additional isolates 
would be needed to perform comparative genomics. 

Table 1  Overview of data files/data sets

Label Name of data file/data set File types (file extension) Data repository and identifier (DOI or accession number)

Data file 1 ALL_CONTIGS_Passa-
lora_sequoiae_Renamed-
Dec12_2019.fsa

FASTA (.fsa) GenBank Accession: https​://ident​ifier​s.org/ncbi/insdc​:WSQC0​10000​00 [33]

Data set 1 Fig. 1 LC blight symptoms .jpg DOI: https​://www.doi.org/10.15482​/USDA.ADC/15189​05 [34]

Data set 1 Fig. 2 Passalora sporulation .png DOI: https​://www.doi.org/10.15482​/USDA.ADC/15189​05 [34]

Data set 1 Fig. 3 Passalora conidia .png DOI: https​://www.doi.org/10.15482​/USDA.ADC/15189​05 [34]

Data set 1 Fig. 4 Passalora 9LC2 phylogeny .pdf DOI: https​://www.doi.org/10.15482​/USDA.ADC/15189​05 [34]

Data set 1 Methodology WORD (.docx) DOI: https​://www.doi.org/10.15482​/USDA.ADC/15189​05 [34]

Passalora sequoiae 9LC2 
Passalora sequoiae CPC 11258

Passalora brachycarpa CBS 115124

Epicoleosporium ramularioides CPC 10672

Graminopassalora graminis CBS 113303

Cercosporella virgaureae CBS 113304

Neopseudocercosporella capsellae CPC 10301

Septoria cucubali CBS 102368
Septoria convolvuli CBS 102325

Septoria dysentericae CPC 12328

Pseudocercosporella sp. CPC 3959
Pallidocercospora acaciigena CPC 3838

Passalora dioscoreae CPC 10855
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100
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Pseudocercosporella sp. CPC 4008

Cercospora sojina CPC 12322
Cercospora zebrina CBS 118789

Pseudocercospora cruenta CPC 10846
Pseudocercospora atromarginalis CPC 11372

Pseudocercospora ocimicola CPC 10283

100
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Fig. 4  Phylogeny of Passalora sequoiae 9LC2 and closely related species based on Neighbor-Joining analysis of 5465 nt of 18S ribosomal RNA 
(rRNA) gene, Internal transcribed spacer (ITS) 1, 5.8S rRNA gene, ITS2 and 28S ribosomal RNA gene partial sequence. Bootstrap of 100 resampling are 
shown at the nodes; scale is nucleotide substitution rate
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Mapping of the Illumina sequences to PacBio contigs 
resulted in small gaps of low frequency; therefore, no 
serious limitation of data quality was evident. Recon-
struction of whole chromosomes showing predicted 
genes and their annotation would provide characteriza-
tion of the structural and functional levels.
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