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RESEARCH NOTE

Can pre-trained convolutional neural 
networks be directly used as a feature extractor 
for video-based neonatal sleep and wake 
classification?
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Abstract 

Objective: In this paper, we propose to evaluate the use of pre-trained convolutional neural networks (CNNs) as 
a features extractor followed by the Principal Component Analysis (PCA) to find the best discriminant features to 
perform classification using support vector machine (SVM) algorithm for neonatal sleep and wake states using  Fluke® 
facial video frames. Using pre-trained CNNs as a feature extractor would hugely reduce the effort of collecting new 
neonatal data for training a neural network which could be computationally expensive. The features are extracted 
after fully connected layers (FCL’s), where we compare several pre-trained CNNs, e.g., VGG16, VGG19, InceptionV3, 
GoogLeNet, ResNet, and AlexNet.

Results: From around 2-h  Fluke® video recording of seven neonates, we achieved a modest classification perfor-
mance with an accuracy, sensitivity, and specificity of 65.3%, 69.8%, 61.0%, respectively with AlexNet using  Fluke® 
(RGB) video frames. This indicates that using a pre-trained model as a feature extractor could not fully suffice for 
highly reliable sleep and wake classification in neonates. Therefore, in future work a dedicated neural network trained 
on neonatal data or a transfer learning approach is required.

Keywords: Convolutional neural networks (CNNs), Video electroencephalogram (VEEG), Neonatal sleep, Sleep and 
wake classification, Feature extraction
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Introduction
Sleep is an essential behavior for the development of 
the nervous system in neonates [1–3]. Normally, new-
born babies sleep between 16 and 18  h per day. Con-
tinuous sleep tracking and assessment could potentially 
provide an indicator of brain development over time [4, 

5]. To achieve this, automatic sleep and wake analysis is 
required, which can offer valuable information on a neo-
nate’s mental and physical growth, not only for health-
care professionals but also for parents [6].

Currently, Video electroencephalogram (VEEG) is con-
sidered as a gold standard for neonatal sleep monitor-
ing, which requires a number of sensors and electrodes 
attached to a neonate’s skin to collect multiple-channel 
EEG signals [7–9]. In addition, the use of VEEG is labor-
intensive, where the human effort on annotating sleep 
states is required [10]. Therefore, one would demand a 
contact-free sleep monitoring system for neonates. In 
recent years, unobtrusive or contact-free approaches 
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have gained a lot of attention for sleep monitoring [11–
16]. All these methods are more successful in adults 
[17, 18]. In contrast, video-based methods appear to be 
a promising approach since it is more comfortable and 
convenient to use both in the home or in the hospitals 
[19, 20]. With the advancements in deep learning algo-
rithms and clinical research on neonatal facial patterns 
[21, 22], a new, unobtrusive approach of monitoring sleep 
patterns has been proposed [23, 24]. However, evalua-
tion of the deep learning models demands big database to 
train the prediction model.

The main contributions of this work include: (a) 
extracting features from well-known CNNs, e.g., VGG-
16, VGG-19, InceptionV3, GoogLeNet, ResNet, and 
AlexNet, (b) comparing different color palette (amber, 
high contrast, red-blue, hot metal, and grayscale) from 
RGB and thermal video frames, and (c) evaluating the 
extracted features using Principal Component Analy-
sis (PCA) followed by Support Vector Machine (SVM) 
to classify neonatal sleep and wake classification. As 
this was an explorative study, to evaluate the feasibility 
of a pre-trained model as a feature extractor to classify 
neonates’ sleep and wake states using video frames, we 
started with a small pilot study population of neonate’s 
video frames data by adopting a robust and less computa-
tional complex approach to classify sleep states.

Main text
Subject database
Video and VEEG data from seven neonates were col-
lected retrospectively by a pediatrician at the Children’s 
Hospital affiliated to Fudan University, Shanghai, China 
[25]. The detailed descriptions of the demographics and 
physical conditions of the neonates are shown in Addi-
tional file  1: Table  S1. Annotation of sleep and wake 
states was performed by a professional neurologist on 
each 30-sec VEEG epoch and video frames, respectively, 
according to the American Academy of Sleep Medicine 
(AASM) [26].

Intensity‑based detection
To enable identifying sleep and wake states for neo-
nates using video frames, it is required to have precise 
face detection in  Fluke® video [27]. Detail description of 
Intensity-based detection has been discussed in our pre-
vious paper [25]. Figure  1 shows the input video frame, 
and the neonatal facial region is detected using an inten-
sity-based method. After that, the detected RGB facial 
region is mapped on other color palettes (thermal) of the 
video frames to extract the facial region.

Pre‑trained CNN models
Our proposed method is to classify neonatal sleep and 
wake states using pre-trained CNNs. Usually, initial lay-
ers of CNNs capture basic input image features like 
spots, boundaries, and colors pattern that are inattentive 
by the deeper hidden layers to form complex higher-level 
feature patterns to present a better-off image illustration 
[28]. Each layer of the CNNs output acts as an activation 
unit for the input images. Literature studies reveal that 
while using pre-trained CNNs for feature extraction, the 
features are usually extracted from the fully-connected 
layers (FCL’s) right before the final output classification 
layer [29, 30]. Considering this motivation, we extracted 
the features from from the FCL’s of a pre-trained net-
work. The detailed descriptions of all the pre-trained 
models is mentioned in Additional file 2: Table S2. In the 
following, we briefly introduce the existing pre-trained 
models as well as PCA and SVM used in our work.

VGG16 and VGG19 Model VGG model [31] contains a 
stack of convolutional layers followed by three FCL’s. In 
this work, we used both pre-trained VGG16 and VGG19 
models, and features were extracted from the last three 
FCLs.

AlexNet architecture The architecture of AlexNet [32] 
that contains a total of eight layers. In this work, we 
extracted features from the last two FCL’s of the pre-
trained AlexNet.

ResNet-18 The baseline structure of the residual net-
work (ResNet) [33] is the same as the other CNNs, 
except that a shortcut link is added to each pair of 3 × 3 
filters. To classify a neonate’s sleep and wake states, we 

Fig. 1 Neonatal face detection using the intensity-based detection 
method
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extract 1000 features from the last FCL of the pre-trained 
ResNet-18 model.

GoogLeNet GoogLeNet [34] has unique features 
that help them to achieve state-of-the-art results and 
outperform other previous networks, e.g., 1 × 1 con-
volution is used as a dimension reduction to reduce 
computation usage. In this work, we have used the pre-
trained GoogLeNet network, and features are extracted 
from the last “FC1000” layer.

InceptionV3 Inception-V3 is the factorization idea in 
the third iteration of GoogLeNet [35]. The last FCL is 
used to extract the features from the pre-trained Incep-
tion–V3 model to perform neonatal sleep and wake 
classification.

Principal component analysis (PCA) PCA is a method 
to differentiate the discriminant features in the dataset 
by suppressing variations [36]. In this paper, once the 
features are extracted from FCL’s of CNNs, we input 
these features to PCA to find the best-discriminated 
features, to help SVM to classify neonates sleep and 
wake states at the next stage.

Support vector machine (SVM) Based on features 
extracted from the pre-trained CNNs, we employed 

an SVM classifier to classify neonatal sleep and wake 
states [37, 38]. We have used the “classificationLearner“ 
app in Matlab R2018b with the SVM default setting 
(kernel function = ‘linear,’ box constraint = 1) to per-
form the classification.

Results and discussion
Twenty-two experiments were conducted on RGB and 
thermal videos, respectively. For evaluation purposes, 
all the results are expressed in terms of sensitivity(Se), 
specificity(Sp), precision(p), and accuracy(Ac), obtained 
using five-fold cross-validation. The results are validated 
with the VEEG annotations.

Table 1 shows the sleep and wake classification results 
obtained by the SVM classifier after feature extraction 
using different pre-trained CNNs. We observed that 
the overall performance of using FCL6-7-8 in VGG-16 
and VGG19, FCL8 in AlexNet, and FCL in inceptionV3, 
ResNet-18, and GoogLeNet was low when used to clas-
sify neonatal sleep and wake states. Multifarious statis-
tical results obtained via SVM to classify neonatal sleep 
and wake states show a disproportionate pattern. How-
ever, RGB-InceptionV3 (FCL) shows the best values for 

Table 1 Neonatal sleep and  wake classification results (five-fold cross-validation) using different pre-trained CNNs 
combined with an SVM classifier

*true positive (TP) = VEEG depict sleep and correctly identified as sleep by our feature extraction approach, false positive (FP) = VEEG depict awake and incorrectly identified as sleep by our feature extraction approach, true negative (TN) 

= VEEG depict awake and correctly as awake identified our feature extraction approach, false negative (FN) = VEEG depict sleep and incorrectly identified as awake by our feature extraction approach

Video frame Se % Sp % Ac % P %
SVM

RGB VGG16 FCL6 52.4 64.05 58.3 57.7

FCL7 52.6 75.1 64.3 66.5

FCL8 40.9 90.0 66.2 40.2

Thermal FCL6 73.1 40.16 58.4 60.2

FCL7 72.4 40.3 58.1 60.0

FCL8 71.2 41.5 58.0 60.1

RGB AlexNet FCL7 69.8 61.0 65.3 62.7

Thermal FCL7 61.0 40.4 49.9 55.0

RGB FCL8 59.5 71.2 65.7 64.7

Thermal FCL8 56.5 60.0 58.4 52.7

RGB VGG19 FCL6 81.9 36.4 52.6 54.6

FCL7 81.0 36.1 51.9 54.5

FCL8 40.9 90.0 65.2 79.4

Thermal FCL6 63.6 54.2 57.1 63.2

FCL7 67.6 45.0 54.6 60.3

FCL8 62.1 52.4 58.1 61.8

RGB InceptionV3 FCL 97.4 30.0 55.1 52.5

Thermal FCL 67.3 47.6 58.7 61.4

RGB ResNet-18 FCL 73.2 50.8 61.2 58.2

Thermal FCL 66.7 46.7 58.3 60.8

RGB GoogLeNet FCL 77.7 41.8 55.3 55.5

Thermal FCL 66.6 46.7 57.83 60.8
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Se is 97.4%, but Ac drops to 55.1%, and similarly RGB-
VGG16 (FCL8) and RGB-VGG19 (FCL8) shows Se of 
90.0%, but overall accuracy is drops to 66.2% and 65.2% 
respectively. However, features extracted from AlexNet 
(FCL7) trained via SVM shows the best optimal results 
with an Ac of 65.3%, Se 69.8%, and Sp of 61.0% to classify 
neonatal sleep and wake states. In contract to the other 
features extracted values from pre-trained networks, fea-
tures extracted from AlexNet (FCL7) contains discrimi-
nant features that assist SVM to classify neonate’s sleep 
and wake stage. One of the main reason to achieved 
higher statistical results using pre-trained AlexNet is 
that as pre-trained, AlexNet was originally trained on 
just over a million images as compared to other CNNs 
that were trained on more the 15 million images, depict-
ing more complex features architecture values at differ-
ent FCL’s [31, 39]. It is observed that in AlexNet, the first 
layer has a filter of size 11 × 11, and the second layer has 
a 5x5 filter, and so on, there is no standard about filter 
sizes and max pooling. The convolutions for each layer 
are decided purely experimentally. In contrary to that, 
other CNNs have standard protocol such as in VGG-Net, 
all the convolution kernels are of size 3x3, and max-pool-
ing is done after 2 or 3 layers of convolutions. Goog-
LeNet works on a parallel combination of 1x1, 3x3, and 
5x5 convolutional filters. The overall complex nature of 
pre-trained CNNs distinguished AlexNet to obtain better 
performance to classify neonatal sleep and wake states. 
Figure 2a shows the standard deviation (STD) of all the 
sleep and wake features extracted from AlexNet FCL7. 
It is observed that most of the sleep and wake extracted 

features from FCL7 are lies almost in the same region. 
However, AlexNet shows slightly better performance 
than other extracted features using SVM; one of the main 
reasons is that the corresponding trained features are 
quite separated from each other. Figure  2b depicts the 
STD of discriminant corresponding features extracted 
after PCA from pre-trained AlexNet (FCL7). These dis-
criminant AlexNet (FCL7) features help to achieve better 
neonatal sleep and wake classification accuracy as com-
pared to other pre-trained CNNs.

As proof of study, we have analyzed other neonatal 
facial color palettes extracted from  Fluke® SmartView. 
Additional file  3: Table  S3 shows the statistical results 
achieved using multiple color palettes such as amber, 
high contrast, red-blue, hot metal, and grayscale. In con-
trast to the results shown in Table 1  Fluke® multiple color 
palettes depict disproportionate results such as high 
contrast-AlexNet (FCL8), InceptionV3-Hot-metal (FCL), 
GoogLeNet-Grayscale(FCL), and VGG19-Red-Blue 
(FCL6) achieved the best values for Se are 84.8%, 76.3%, 
73.0%, and 81.1% respectively. Similarly, VGG-19-Amber 
(FCL) shows the best values for Sp is 87.8%. However, 
overall, Ac obtained from these color palates are quite 
low; VGG19-High Contrast (FCL7) shows the best Ac of 
65.6%. One of the main reason is that the range of these 
 Fluke® color palettes are quite narrow, as shown in Addi-
tional file 4: Figure S1.

In general, the statistical results of the pre-trained 
CNNs model as a feature extractor to classify neonatal 
sleep and wake states are quite modest [20]. One of the 
main reasons for attaining such modest accuracy is that 

Fig. 2 a STD of all features extracted from the pre-trained AlexNet (FCL7). b STD of discriminant features after PCA extracted from the pre-trained 
AlexNet (FCL7). The central redline (inside the blue boxes) indicates the median, and the bottom and top edges of the blue-box indicate the 25th 
and 75th percentiles of data points, respectively. The whiskers extend to the most extreme data points not considered outliers, and the outliers are 
plotted individually using the ‘ + ’ symbol
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all the existing pre-trained CNNs network were trained 
on natural images such as animals, flowers, sceneries, 
and automobiles, etc. The feature patterns of pre-trained 
CNNs networks classes are quite different from our neo-
nate’s database, that makes it difficult for existing CNNs 
to classify neonate’s sleep and wake states [40, 41]. The 
motivation for using pre-trained CNNs as feature extrac-
tion is that it doesn’t demand a lot of computational 
capacity, and it is quite robust as we do not need to retain 
the network; these attributes compel us to start with fea-
ture extraction approach to classifying neonatal sleep and 
wake states. However, experimental analysis depicts that 
this approach doesn’t offer the promising results to act as 
an aided tool for clinicians to classify neonates’ sleep and 
wake states unobtrusively. Nevertheless, as there are no 
such studies has been reported in the literature by analyz-
ing the neonatal facial videos to classify sleep and wake 
states using CNNs as feature extractor. This research 
could be helpful for future studies to adopt other tech-
niques (e.g., transfer learning or dedicated CNNs) to clas-
sify neonatal sleep and wake states using video frames to 
achieve better accuracy.

Conclusions
This work experimentally verified the achievability of 
unobtrusive neonatal sleep and wake states via automatic 
classification using a video frames from  fluke® camera. 
Five-fold cross-validation depicts the modest accuracy of 
65.3% from pre-trained AlexNet at FCL7, compared with 
VEEG annotated data by a neurologist for sleep and wake 
states. In the future, the transfer learning approach/dedi-
cated CNNs and more datasets collection with different 
ethnic groups will be the next step of our research work.

Limitations of the study
It is also important to note that this is a preliminary 
study, where video data collection took place in a con-
trolled environment with fixed camera placement, stable 
lighting conditions, and under the supervision of nurses 
and pediatricians. Furthermore, as for this proof-of-point 
study, we analyzed the variations in neonatal facial pat-
tern no clear sleep-related issues (albeit with various rea-
sons of hospital admission). The accuracy concerning to 
those with sleep syndromes have remained unclear. This 
article focus only on two-state (sleep and wake) classifica-
tion, and the dedicated design of deep learning architec-
ture to classify neonatal sleep stages is on the foremost 
next step of this research work.
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