
Wang and Hai BMC Res Notes (2020) 13:521
https://doi.org/10.1186/s13104-020-05371-0

RESEARCH NOTE

FINET: Fast Inferring NETwork
Anyou Wang1* and Rong Hai1,2*

Abstract

Objectives: Numerous software has been developed to infer the gene regulatory network, a long-standing key topic
in biology and computational biology. Yet the slowness and inaccuracy inherited in current software hamper their
applications to the increasing massive data. Here, we develop a software, FINET (Fast Inferring NETwork), to infer a
network with high accuracy and rapidity from big data.

Results: The high accuracy results from integrating algorithms with stability-selection, elastic-net, and parameter
optimization. Tested by a known biological network, FINET infers interactions with over 94% precision. The high speed
comes from partnering parallel computations implemented with Julia, a new compiled language that runs much
faster than existing languages used in the current software, such as R, Python, and MATLAB. Regardless of FINET’s
implementations with Julia, users with no background in the language or computer science can easily operate it, with
only a user-friendly single command line. In addition, FINET can infer other networks such as chemical networks and
social networks. Overall, FINET provides a confident way to efficiently and accurately infer any type of network for any
scale of data.

Keywords: FINET, Network, Inference, Julia, Stability selection, Elastic-net, LASSO, Accuracy

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
All biological phenotypes are achieved from fine regula-
tion of gene expression. Thus, understanding gene regu-
lations is a crucially fundamental topic in the biology.
Conventionally, manipulating gene mutations such as
knockout and knockdown helps to digest the gene regu-
lations. However, these approaches suffer several draw-
backs such as transcript compensatory and side effects
[1]. Gene mutation approaches also assume that the
genome remains stable after mutations. However, the
genome varies dramatically with even a single gene muta-
tion, which alters gene expressions of thousand genes as
shown in RNA sequencing data. As a result, there is no
way to fully comprehend the complete regulatory inter-
actions of any single gene.

Computational biology and bioinformatics have
attempted to infer gene regulatory networks from gene

expression data, and have established software and tools
to execute their works [2–9]. However, the efficiency
of current software suffers from high noise and lag-
ging. They usually generate overly complicated network
interactions—mostly false positives [2]. Therefore, these
results actually provide more questions than answers
to true biology regulatory interactions. In addition, the
current software face challenges when applied to big
sequencing data. With the software FINET, we are able to
quickly and accurately reveal true gene interactions and
refresh gene interaction pictures from massive data.

Main text
Theory and algorithms
Theoretically, FINET is based on elastic-net theory and
stability selections. The elastic-net is an extension of
LASSO [10] (least absolute shrinkage and selection oper-
ator, referring to theory and algorithm [11] for detailed),
a penalized regression method for shrinkage and variable
selection by minimizing:

Open Access

BMC Research Notes

*Correspondence: anyou.wang@alumni.ucr.edu; rong.hai@ucr.edu
1 The Institute for Integrative Genome Biology, University of California
at Riverside, Riverside, CA 92521, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-4981-3606
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-020-05371-0&domain=pdf

Page 2 of 6Wang and Hai BMC Res Notes (2020) 13:521

 i = 1, 2, …, n (n equivalent to sample size); j = 1, 2, …, p
(p equivalent to omics gene number); yi = response vari-
able of sample i, βj = coefficient foe gene j, j = 1, 2, …, p,
and xij = observation value of sample i and gene j.

Lasso tends to ignore the variables in a correlated
group. To include the correlated genes, the elastic-
net adds an additional quadratic part

∑

j β
2

j ≤ t to the
penalization.

Elastic-net and lasso are arguably the best methods
for shrinkage and variable selection, and k-fold cross-
validations have been implemented in current software
like GMLNet [12]. However, these validations include
too many variables and these selected variables offer
results of coefficients without any priority of trueness. It
is then difficult to estimate the stability of these variable
selections.

To improve the accuracy of variable selection, stability
selection comes into play [13]. The general idea of stabil-
ity selection is to add a re-sampling step into an existing
model selection to make it stable and increase accuracy.
For example, during elastic-net selection, the total sam-
ples are randomly partitioned into two subgroups, and
each subgroup is subjected to an elastic-net model selec-
tion. If a variable was simultaneously selected at the two
groups, the selected variable would be likely true [13].

The FINET’s algorithm of each resampling step is to
bootstrap randomly split samples into m subgroups
(m ≥ 2) without replacement. In each subgroup, a com-
plete model of elastic-net is run to select variables (regu-
lators in biology) interacting with a target (a target gene
in biology). Such resampling step iterates n times. The
frequency of each regulator selected during iterations is
counted as frequency score. Frequency score is equal to
total selected times in n*m trials (total hits/n*m), and it is
used to rank regulator priority of confidences (frequency
levels) and confidence strength in true positive selection.
The maximum frequency score is 1 (the highest confi-
dence). A variable with a frequency score of 1 for a given
target means that it was always selected in m*n trials and
it is likely a true positive regulator for this target. When
m increases (e.g. m = 8), in which a regulator simultane-
ously targets its target at m sub-groups in n bootstrap
resampling, type I error goes down dramatically.

Parameter optimization
We have optimized FINET parameters for most com-
mon users and these parameters were set as default
values in FINET. Here, we only highlighted parameter

n
�

i=1

yi −
�

j

xijβj

2

+ �

p
�

j=1

�

�βj
�

�

optimization of the frequency score cutoff and resam-
pling in m groups.

Frequency score cutoff
To systematically optimize the frequency score cutoff
for FINET, we run FINET to select regulators control-
ling each target in a well-known matrix established by
dream5 network challenge, network1 [2] (Table 1), which
includes an in silico matrix (1643 genes and 805 obser-
vations) and golden standard true positives derived from
well-established regulatory database, regulonDB [14].

From the theory above, we learned that a high fre-
quency cutoff ensures the accuracy of variable selec-
tion. The optimal cutoff, however, remains unknown.
To optimize the frequency cutoff, we first computed the
AUC (Area Under The Curve) of ROC (receiver operat-
ing characteristic curve) at an array of frequency from
0.1 to 1. The golden standard at network1 was treated
as known interactions, and the total true positives pro-
duced by FINET were treated as true positive callings,
and the rest were negative callings. As expected, the
AUC decreased with increasing frequency cutoff (Fig. 1a,
blue line). At the frequency cutoff of 0.2, AUC reached
71.1%, but at the frequency cutoff of 0.95, the AUC low-
ered to 57.1%. This was consistent with the trend of total
true positive callings, which declined dramatically with
a high frequency cutoff (Fig. 1a, red line). Obviously, at
lower frequency cutoff, more positives were selected and
less negatives were filled in. This resulted in higher AUC,
but it contained higher noise because more false positives
were also added to the selection. Therefore, AUC may not
be a good measurement to evaluate the accuracy of true
positive calling.

Here, we used precision (true positives/total true posi-
tive callings) to measure accuracy. During variable selec-
tion, we normally select too many variables, unsure of
which one is true. In the network inference, it is more
meaningful to have a higher precision than to call more
true positives including noise. In fact, some interactions
in biology may not be relevant or condition-dependent,
and ignoring some interactions might make the net-
work clear. Many biological experiments are normally

Table 1 Test dataset features

Source Dream5 network1

Data type In silico

Structure of interactions RegulonDB

Size (observation*genes) 805*1643

Total interactions 278,392

True interactions 4012

False interactions 274,380

Page 3 of 6Wang and Hai BMC Res Notes (2020) 13:521

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�

�

�
�

�

0.25

0.50

0.75

1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.951.0

Pe
rc
en

ta
ge

variable

�

�

NormalizedTruePositive

AUC

Frequency cut o�

�

�

�

�

�

�

�

�

�

�

0.4

0.6

0.8

0 100 200 300 400 500

m

�

�

2
4
8

Iteration

a

b

Pr
ec

is
io
n

Precision

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

0
.7
5

0
.8
0

0
.8
5

0
.9
0

m=8 performance

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

0
.8
0

0
.8
5

0
.9
0

Recall

Recall

Pr
ec

isi
on

Pre
cis

ion

m=12 performance

c

d

e

0.936 0.922

0.8128655 0.8128655

0.723 0.723

0.00

0.25

0.50

0.75

m=12 m=8

Pr
ec

isi
on

FINET
ARACNE
C3NET

1e-10 1e-10 1e-2 1e-2

Performance comparison

Fig. 1 FINET parameter optimization and performance. a Frequency cutoff optimization. Frequency cutoff from 0.1 to 1.0 vs AUC, precision and
normalized true positive calling (true positive callings at each cutoff/max(true positive callings at each cutoff)). This data resulted from FINET
running on network1 at dream5 with following settings, m = 4, n = 500, alpha = 0.5 (see github software website for details). b Comparisons of
precision of resampling m subgroups (frequency cutoff > 0.95). c, d The overall performance of FINET when m = 8 (c) and 12 (d). e Performance
comparison between FINET, ARACNe-AP and C3NET. X-axis lab fo ARACNe-AP and C3NET represent p-value and alpha value, respectively, designed
for significant threshold in ARACNe-AP and C3NET, while m in FINET as the number of sub-groups as shown above

Page 4 of 6Wang and Hai BMC Res Notes (2020) 13:521

conducted to prove one true gene interaction. It is valu-
able to obtain real true positives from computational
biology. Adding false positives to get the high AUC would
jeopardize the scientific value of findings. Therefore, the
precision has more advantage than AUC.

The precision increased positively with frequency cut-
off (Fig. 1a green line). When frequency cutoff at 0.95,
the precision reached 80% at resampling m = 4. A higher
frequency cutoff directly correlated to a higher precision
and inversely related to the error ratio. These results fit
the theory above very well. In contrast, more than 90% of
true positive callings were false positives at cutoff = 0.1,
indicating most selections (> 90%) as false without sta-
bility-selection resampling step. Therefore, the high fre-
quency cutoff (e.g. 0.95) reduces false positive callings
and makes selection stable and robust. Stability-selection
resampling is necessary and important for selecting cor-
rect variables.

Resampling m subgroups
Resampling is the key technique to improve the precision
in FINET, which allows resampling m subgroups. We
plotted the precision for each m (m = 2,4,8) and evalu-
ated the effect of m on the precision. When m = 2, the
maximum of precision only reached 45% at n = 200 itera-
tions and still kept a lot of noise, although m = 2 was pro-
posed and adopted in most current software [2, 13].

To solve the high noise problem, FINET increases m
value as described above. FINET reaches 80% and 92%
for m = 4 and 8 respectively (Fig. 1b). In addition, when
m = 8, the precision reached 91% with n = 10 iterations,
and only slightly increased to 92% at n = 100. Precision
became stable at n = 200. Therefore, increasing iteration
n value to a big number like 10,000 as suggested in most
software might not help a lot.

To appreciate the overall improvement from FINET, we
plotted its precision against recall for m = 8 and m = 12
(Fig. 1c, d). When m = 8 and frequency cutoff with 0.99,
0.95, and 0,9, the precision of FINET reaches respec-
tively 92.2%, 91.8%, and 89.4% with recall 0.04, 0.07, 0.1
(Fig. 1c). Increasing m to 12 improves precision to 94.2%,
93.6%, 91.8% respectively for frequency cutoff of 0.99,
0.95 and 0.9, with recall 0.02, 0.04, 0.05 (Fig. 1d). This
suggested that the best way to improve accuracy is to
increase sample size to allow big m value (e.g. m ≥ 8).

Performance comparison
To compare the performance of FINET to other existing
software, we compared it to C3NET and ARACNe-AP
that were reported as top performers in network infer-
ences [8, 9]. We still used the dream network1 to calcu-
late the precision obtained by both FINET, C3NET and
ARACNe-AP. FINET precision increased from 92.2 to

94.2% when m values changed from 8 to 12 as described
above, and obviously FINET could go beyond 94.2% if
m increased to 14 or 16 when sample size is available.
In contrast, C3NET and ARACNe-AP only got 72.3%
and 81% precision respectively when the statistical sig-
nificance threshold (alpha value set by C3NET) was set
from 0.01 to 1e−10 (Fig. 1e). Actually, bother C3NET
and ARACNe-AP was not sensitive to cutoff (alpha in
C3NET and p value in ARACNe-AP), but ARACNe-AP
responded to bootstrap number. ARACNe-AP could
reach the highest precision (0.81 at 5 reproducible boot-
straps) but its precision declined with more bootstraps
(e.g. precision of 0.52 at 20 reproducible bootstraps).
However, FINET was very sensitive to parameter settings
as discussed above. FINET designs to get high precision.

Implementation, speed and usage
To get high precision, FINET employs sophisticated
algorithms including Elastic-net. Elastic-net has a
computational complexity close to O(n3) when vari-
ables > observations [15] although the complexity var-
ies with implementations. This high complexity leads to
slowness in computation. To solve the slowness problem
while keeping high precision performance, we imple-
mented FINET with parallel computations in Julia, a new
language with speed comparable to C/C++. From julia
0.4 to its latest version, we believe the multiple process
as the stable module for parallel computations in Julia,
although other approaches have been introduced. There-
fore, FINET still uses multiple process modules for par-
allel computations. Running multiple processes requires
big memory for large quantities of data. This issue is
solved by using shared arrays across the processes to
reduce the memory consumption in FINET.

The speed of FINET develops on many parameters,
including variables and user customer settings such as
CPU number, iterations (n), sub-groups in stability-selec-
tion (m), k validations in elastic-net model. Therefore, it
is hard to find reasonable metrics to compare its direct
speed with other software. It seemed reasonable to com-
pare the time for a same process. For example, compar-
ing the same Fortran code of elastic-net model, glmnet,
running respectively in R and Julia for a random matrix
10,000*100, Julia and R took respectively 0.7541 and
1.166 s to complete a single cross-validation fit. This is
expected because it is known that Julia run much faster
than R, Python and MATLAB, which are widely used
in network inference software. However, this did not
mean that FINET always completes a network inference
faster than other software because a single process is
only the core process to select variables and FINET has
high complexity inside its math models and algorithms
as described above. In another way, we can measure the

Page 5 of 6Wang and Hai BMC Res Notes (2020) 13:521

run-time of completing a task at a given condition. Here,
we compared FINET, C3NET and ARACNe-AP in a sin-
gle computer node with 40 CPUs by using network1 in
dream5. FINET, C3NET and ARACNe-AP completed it
with 108.692079618, 82.727504605 and 145.465978563 s
respectively (Table 2). This should represent the compu-
tational complexity of these three software but FINET
could go faster than that if more CPUs were available.
Again, FINET speed develops on user settings.

For the big data, it is unpractical to use C3NET to run
big data like a 100,000*100,000 matrix due to its single
CPU structure in slow R environment. ARACNe-AP
implementation with parallel computation can run up
to 65 536 samples and a limited gene list [16]. FINET
designs for the big data with scalable properties in paral-
lel computations and shared memory management.

Using FINET is easy. FINET completes all processes
with one simple command line, with input data and
output file names as required, and other arguments as
optional and default. The input data is a normalized
matrix with each column as a gene and rows as obser-
vations (see the github web for details). Anyone with or
without a computer science background can easily com-
plete the command line.

Although developed under Linux environment, FINET
should perform well in any operating system with Julia
installation, including microsoftware window and apple
machintosh.

Conclusion
This study developed algorithms and software, FINET, to
infer network with both high accuracy and speed. Due to
its scalability in parallel computation, FINET is specifi-
cally useful for big data analysis.

Limitation
This software should not be applied to unnormalized
data at current stage until further development note.

Abbreviations
FINET: Fast Inferring NETwork; LASSO: Least absolute shrinkage and selection
operator; AUC : Area Under The Curve; ROC: Receiver operating characteristic
curve.

Acknowledgements
Thank Stephanie Thurmond and Paul J Rider for editing this manuscript. This
work was supported by University of California Riverside initial funding.

Authors’ contributions
AW designed project, developed algorithm, coded software, and wrote the
manuscript. RH was involved in project design and writing manuscript. Both
authors read and approved the final manuscript.

Funding
University of California Riverside.

Availability of data and materials
Availability and implementation available in github https ://githu b.com/anyou
wang/finet .git. Application samples shown in our manuscript titled “Big-data
analysis unearths the general regulatory regime in normal human genome
and cancer” https ://doi.org/10.1101/79197 0. Detailed application data https ://
comba i.org/netwo rk/.

Ethics approval and consent to participate
Not applicable.

Consent to publication
Not applicable.

Competing interests
No competing interests.

Author details
1 The Institute for Integrative Genome Biology, University of California at Riv-
erside, Riverside, CA 92521, USA. 2 Department of Microbiology and Plant
Pathology, University of California at Riverside, Riverside, CA 92521, USA.

Received: 29 February 2020 Accepted: 31 October 2020

References
 1. El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Günther S, Fukuda N, et al.

Genetic compensation triggered by mutant mRNA degradation. Nature.
2019;568:193.

 2. Marbach D, Costello JC, Küffner R, Vega NM, Prill RJ, Camacho DM, et al.
Wisdom of crowds for robust gene network inference. Nat Methods.
2012;9:796–804.

 3. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory
networks from expression data using tree-based methods. PLoS ONE.
2010;5:90.

 4. Mordelet F, Vert J-P. SIRENE: supervised inference of regulatory networks.
Bioinformatics. 2008;24:i76–82.

 5. Haury A-C, Mordelet F, Vera-Licona P, Vert J-P. TIGRESS: Trustful Inference
of Gene REgulation using Stability Selection. BMC Syst Biol. 2012;6:145.

 6. Zoppoli P, Morganella S, Ceccarelli M. TimeDelay-ARACNE: Reverse
engineering of gene networks from time-course data by an information
theoretic approach. BMC Bioinform. 2010;11:154.

 7. Ruyssinck J, Huynh-Thu VA, Geurts P, Dhaene T, Demeester P, Saeys Y.
NIMEFI: Gene Regulatory Network Inference using Multiple Ensemble
Feature Importance Algorithms. PLoS ONE. 2014. https ://doi.org/10.1371/
journ al.pone.00927 09.

Table 2 Comparison of FINET and C3NET

For comparable speed test of all software, FINET parameters were set to simple
settings, m = 1 with 5 cross-validations, and ARACNe was set to 5 bootstraps
a Completed in a computer node with 40 CPUs. All genes were used to infer
their interactions

Metrics FINET ARACNe-AP C3NET

Precision (%) 94.2 0.81 72.3

Parameter sensitivity Very Moderate Not

Implementation Julia Java R

Big data Fast Moderate Not practical

Sample size Unlimited 65 k Not practical

Gene size Unlimited Limited Not practical

Complete net1 (s)a 108.6920796 145.4659786 82.7275046

Memory Share Thread share Not

https://github.com/anyouwang/finet.git
https://github.com/anyouwang/finet.git
https://doi.org/10.1101/791970
https://combai.org/network/
https://combai.org/network/
https://doi.org/10.1371/journal.pone.0092709
https://doi.org/10.1371/journal.pone.0092709

Page 6 of 6Wang and Hai BMC Res Notes (2020) 13:521

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

 8. Altay G, Emmert-Streib F. Inferring the conservative causal core of gene
regulatory networks. BMC Syst Biol. 2010;4:132.

 9. Emmert-Streib F, Glazko G, Gokmen A, De Matos Simoes R. Statisti-
cal inference and reverse engineering of gene regulatory networks
from observational expression data. Front Genet. 2012. https ://doi.
org/10.3389/fgene .2012.00008 .

 10. Wang A, Sarwal MM. Computational models for transplant biomarker dis-
covery. Front Immunol. 2015. https ://doi.org/10.3389/fimmu .2015.00458 .

 11. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc
Series B (Methodological). 1996;58:267–88.

 12. Friedman J, Hastie T, Tibshirani R. Regularization paths for general-
ized linear models via coordinate descent. J Stat Soft. 2010. http://doi.
org/10.18637 /jss.v033.i01.

 13. Meinshausen N, Bühlmann P. Stability selection. J R Stat Soc.
2010;72:417–73.

 14. Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muñiz-Ras-
cado L, Solano-Lira H, et al. RegulonDB version 7.0: transcriptional regula-
tion of Escherichia coli K-12 integrated within genetic sensory response
units (Gensor Units). Nucleic Acids Res. 2011;39 Database issue:D98–105.

 15. Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. Ann
Statist. 2004;32:407–99.

 16. Lachmann A, Giorgi FM, Lopez G, Califano A. ARACNe-AP: gene network
reverse engineering through adaptive partitioning inference of mutual
information. Bioinformatics. 2016;32:2233–5.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3389/fgene.2012.00008
https://doi.org/10.3389/fgene.2012.00008
https://doi.org/10.3389/fimmu.2015.00458
http://doi.org/10.18637/jss.v033.i01
http://doi.org/10.18637/jss.v033.i01

	FINET: Fast Inferring NETwork
	Abstract
	Objectives:
	Results:

	Introduction
	Main text
	Theory and algorithms
	Parameter optimization
	Frequency score cutoff
	Resampling m subgroups
	Performance comparison
	Implementation, speed and usage

	Conclusion
	Limitation

	Acknowledgements
	References

