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Abstract 

Objectives: Numerous software has been developed to infer the gene regulatory network, a long-standing key topic 
in biology and computational biology. Yet the slowness and inaccuracy inherited in current software hamper their 
applications to the increasing massive data. Here, we develop a software, FINET (Fast Inferring NETwork), to infer a 
network with high accuracy and rapidity from big data.

Results: The high accuracy results from integrating algorithms with stability-selection, elastic-net, and parameter 
optimization. Tested by a known biological network, FINET infers interactions with over 94% precision. The high speed 
comes from partnering parallel computations implemented with Julia, a new compiled language that runs much 
faster than existing languages used in the current software, such as R, Python, and MATLAB. Regardless of FINET’s 
implementations with Julia, users with no background in the language or computer science can easily operate it, with 
only a user-friendly single command line. In addition, FINET can infer other networks such as chemical networks and 
social networks. Overall, FINET provides a confident way to efficiently and accurately infer any type of network for any 
scale of data.
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Introduction
All biological phenotypes are achieved from fine regula-
tion of gene expression. Thus, understanding gene regu-
lations is a crucially fundamental topic in the biology. 
Conventionally, manipulating gene mutations such as 
knockout and knockdown helps to digest the gene regu-
lations. However, these approaches suffer several draw-
backs such as transcript compensatory and side effects 
[1]. Gene mutation approaches also assume that the 
genome remains stable after mutations. However, the 
genome varies dramatically with even a single gene muta-
tion, which alters gene expressions of thousand genes as 
shown in RNA sequencing data. As a result, there is no 
way to fully comprehend the complete regulatory inter-
actions of any single gene.

Computational biology and bioinformatics have 
attempted to infer gene regulatory networks from gene 

expression data, and have established software and tools 
to execute their works [2–9]. However, the efficiency 
of current software suffers from high noise and lag-
ging. They usually generate overly complicated network 
interactions—mostly false positives [2]. Therefore, these 
results actually provide more questions than answers 
to true biology regulatory interactions. In addition, the 
current software face challenges when applied to big 
sequencing data. With the software FINET, we are able to 
quickly and accurately reveal true gene interactions and 
refresh gene interaction pictures from massive data.

Main text
Theory and algorithms
Theoretically, FINET is based on elastic-net theory and 
stability selections. The elastic-net is an extension of 
LASSO [10] (least absolute shrinkage and selection oper-
ator, referring to theory and algorithm [11] for detailed), 
a penalized regression method for shrinkage and variable 
selection by minimizing: 
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 i = 1, 2, …, n (n equivalent to sample size); j = 1, 2, …, p 
(p equivalent to omics gene number); yi = response vari-
able of sample i, βj = coefficient foe gene j, j = 1, 2, …, p, 
and xij = observation value of sample i and gene j.

Lasso tends to ignore the variables in a correlated 
group. To include the correlated genes, the elastic-
net adds an additional quadratic part 

∑

j β
2

j ≤ t to the 
penalization.

Elastic-net and lasso are arguably the best methods 
for shrinkage and variable selection, and k-fold cross-
validations have been implemented in current software 
like GMLNet [12]. However, these validations include 
too many variables and these selected variables offer 
results of coefficients without any priority of trueness. It 
is then difficult to estimate the stability of these variable 
selections.

To improve the accuracy of variable selection, stability 
selection comes into play [13]. The general idea of stabil-
ity selection is to add a re-sampling step into an existing 
model selection to make it stable and increase accuracy. 
For example, during elastic-net selection, the total sam-
ples are randomly partitioned into two subgroups, and 
each subgroup is subjected to an elastic-net model selec-
tion. If a variable was simultaneously selected at the two 
groups, the selected variable would be likely true [13].

The FINET’s algorithm of each resampling step is to 
bootstrap randomly split samples into m subgroups 
(m ≥ 2) without replacement. In each subgroup, a com-
plete model of elastic-net is run to select variables (regu-
lators in biology) interacting with a target (a target gene 
in biology). Such resampling step iterates n times. The 
frequency of each regulator selected during iterations is 
counted as frequency score. Frequency score is equal to 
total selected times in n*m trials (total hits/n*m), and it is 
used to rank regulator priority of confidences (frequency 
levels) and confidence strength in true positive selection. 
The maximum frequency score is 1 (the highest confi-
dence). A variable with a frequency score of 1 for a given 
target means that it was always selected in m*n trials and 
it is likely a true positive regulator for this target. When 
m increases (e.g. m = 8), in which a regulator simultane-
ously targets its target at m sub-groups in n bootstrap 
resampling, type I error goes down dramatically.

Parameter optimization
We have optimized FINET parameters for most com-
mon users and these parameters were set as default 
values in FINET. Here, we only highlighted parameter 
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optimization of the frequency score cutoff and resam-
pling in m groups.

Frequency score cutoff
To systematically optimize the frequency score cutoff 
for FINET, we run FINET to select regulators control-
ling each target in a well-known matrix established by 
dream5 network challenge, network1 [2] (Table 1), which 
includes an in silico matrix (1643 genes and 805 obser-
vations) and golden standard true positives derived from 
well-established regulatory database, regulonDB [14].

From the theory above, we learned that a high fre-
quency cutoff ensures the accuracy of variable selec-
tion. The optimal cutoff, however, remains unknown. 
To optimize the frequency cutoff, we first computed the 
AUC (Area Under The Curve) of ROC (receiver operat-
ing characteristic curve) at an array of frequency from 
0.1 to 1. The golden standard at network1 was treated 
as known interactions, and the total true positives pro-
duced by FINET were treated as true positive callings, 
and the rest were negative callings. As expected, the 
AUC decreased with increasing frequency cutoff (Fig. 1a, 
blue line). At the frequency cutoff of 0.2, AUC reached 
71.1%, but at the frequency cutoff of 0.95, the AUC low-
ered to 57.1%. This was consistent with the trend of total 
true positive callings, which declined dramatically with 
a high frequency cutoff (Fig.  1a, red line). Obviously, at 
lower frequency cutoff, more positives were selected and 
less negatives were filled in. This resulted in higher AUC, 
but it contained higher noise because more false positives 
were also added to the selection. Therefore, AUC may not 
be a good measurement to evaluate the accuracy of true 
positive calling.

Here, we used precision (true positives/total true posi-
tive callings) to measure accuracy. During variable selec-
tion, we normally select too many variables, unsure of 
which one is true. In the network inference, it is more 
meaningful to have a higher precision than to call more 
true positives including noise. In fact, some interactions 
in biology may not be relevant or condition-dependent, 
and ignoring some interactions might make the net-
work clear. Many biological experiments are normally 

Table 1 Test dataset features

Source Dream5 network1

Data type In silico

Structure of interactions RegulonDB

Size (observation*genes) 805*1643

Total interactions 278,392

True interactions 4012

False interactions 274,380
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Fig. 1 FINET parameter optimization and performance. a Frequency cutoff optimization. Frequency cutoff from 0.1 to 1.0 vs AUC, precision and 
normalized true positive calling (true positive callings at each cutoff/max(true positive callings at each cutoff )). This data resulted from FINET 
running on network1 at dream5 with following settings, m = 4, n = 500, alpha = 0.5 (see github software website for details). b Comparisons of 
precision of resampling m subgroups (frequency cutoff > 0.95). c, d The overall performance of FINET when m = 8 (c) and 12 (d). e Performance 
comparison between FINET, ARACNe-AP and C3NET. X-axis lab fo ARACNe-AP and C3NET represent p-value and alpha value, respectively, designed 
for significant threshold in ARACNe-AP and C3NET, while m in FINET as the number of sub-groups as shown above



Page 4 of 6Wang and Hai  BMC Res Notes          (2020) 13:521 

conducted to prove one true gene interaction. It is valu-
able to obtain real true positives from computational 
biology. Adding false positives to get the high AUC would 
jeopardize the scientific value of findings. Therefore, the 
precision has more advantage than AUC.

The precision increased positively with frequency cut-
off (Fig.  1a green line). When frequency cutoff at 0.95, 
the precision reached 80% at resampling m = 4. A higher 
frequency cutoff directly correlated to a higher precision 
and inversely related to the error ratio. These results fit 
the theory above very well. In contrast, more than 90% of 
true positive callings were false positives at cutoff = 0.1, 
indicating most selections (> 90%) as false without sta-
bility-selection resampling step. Therefore, the high fre-
quency cutoff (e.g. 0.95) reduces false positive callings 
and makes selection stable and robust. Stability-selection 
resampling is necessary and important for selecting cor-
rect variables.

Resampling m subgroups
Resampling is the key technique to improve the precision 
in FINET, which allows resampling m subgroups. We 
plotted the precision for each m (m = 2,4,8) and evalu-
ated the effect of m on the precision. When m = 2, the 
maximum of precision only reached 45% at n = 200 itera-
tions and still kept a lot of noise, although m = 2 was pro-
posed and adopted in most current software [2, 13].

To solve the high noise problem, FINET increases m 
value as described above. FINET reaches 80% and 92% 
for m = 4 and 8 respectively (Fig. 1b). In addition, when 
m = 8, the precision reached 91% with n = 10 iterations, 
and only slightly increased to 92% at n = 100. Precision 
became stable at n = 200. Therefore, increasing iteration 
n value to a big number like 10,000 as suggested in most 
software might not help a lot.

To appreciate the overall improvement from FINET, we 
plotted its precision against recall for m = 8 and m = 12 
(Fig. 1c, d). When m = 8 and frequency cutoff with 0.99, 
0.95, and 0,9, the precision of FINET reaches respec-
tively 92.2%, 91.8%, and 89.4% with recall 0.04, 0.07, 0.1 
(Fig. 1c). Increasing m to 12 improves precision to 94.2%, 
93.6%, 91.8% respectively for frequency cutoff of 0.99, 
0.95 and 0.9, with recall 0.02, 0.04, 0.05 (Fig.  1d). This 
suggested that the best way to improve accuracy is to 
increase sample size to allow big m value (e.g. m ≥ 8).

Performance comparison
To compare the performance of FINET to other existing 
software, we compared it to C3NET and ARACNe-AP 
that were reported as top performers in network infer-
ences [8, 9]. We still used the dream network1 to calcu-
late the precision obtained by both FINET, C3NET and 
ARACNe-AP. FINET precision increased from 92.2 to 

94.2% when m values changed from 8 to 12 as described 
above, and obviously FINET could go beyond 94.2% if 
m increased to 14 or 16 when sample size is available. 
In contrast, C3NET and ARACNe-AP only got 72.3% 
and 81% precision respectively when the statistical sig-
nificance threshold (alpha value set by C3NET) was set 
from 0.01 to 1e−10 (Fig.  1e). Actually, bother C3NET 
and ARACNe-AP was not sensitive to cutoff (alpha in 
C3NET and p value in ARACNe-AP), but ARACNe-AP 
responded to bootstrap number. ARACNe-AP could 
reach the highest precision (0.81 at 5 reproducible boot-
straps) but its precision declined with more bootstraps 
(e.g. precision of 0.52 at 20 reproducible bootstraps). 
However, FINET was very sensitive to parameter settings 
as discussed above. FINET designs to get high precision.

Implementation, speed and usage
To get high precision, FINET employs sophisticated 
algorithms including Elastic-net. Elastic-net has a 
computational complexity close to O(n3) when vari-
ables > observations [15] although the complexity var-
ies with implementations. This high complexity leads to 
slowness in computation. To solve the slowness problem 
while keeping high precision performance, we imple-
mented FINET with parallel computations in Julia, a new 
language with speed comparable to C/C++. From julia 
0.4 to its latest version, we believe the multiple process 
as the stable module for parallel computations in Julia, 
although other approaches have been introduced. There-
fore, FINET still uses multiple process modules for par-
allel computations. Running multiple processes requires 
big memory for large quantities of data. This issue is 
solved by using shared arrays across the processes to 
reduce the memory consumption in FINET.

The speed of FINET develops on many parameters, 
including variables and user customer settings such as 
CPU number, iterations (n), sub-groups in stability-selec-
tion (m), k validations in elastic-net model. Therefore, it 
is hard to find reasonable metrics to compare its direct 
speed with other software. It seemed reasonable to com-
pare the time for a same process. For example, compar-
ing the same Fortran code of elastic-net model, glmnet, 
running respectively in R and Julia for a random matrix 
10,000*100, Julia and R took respectively 0.7541 and 
1.166  s to complete a single cross-validation fit. This is 
expected because it is known that Julia run much faster 
than R, Python and MATLAB, which are widely used 
in network inference software. However, this did not 
mean that FINET always completes a network inference 
faster than other software because a single process is 
only the core process to select variables and FINET has 
high complexity inside its math models and algorithms 
as described above. In another way, we can measure the 
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run-time of completing a task at a given condition. Here, 
we compared FINET, C3NET and ARACNe-AP in a sin-
gle computer node with 40 CPUs by using network1 in 
dream5. FINET, C3NET and ARACNe-AP completed it 
with 108.692079618, 82.727504605 and 145.465978563 s 
respectively (Table 2). This should represent the compu-
tational complexity of these three software but FINET 
could go faster than that if more CPUs were available. 
Again, FINET speed develops on user settings.

For the big data, it is unpractical to use C3NET to run 
big data like a 100,000*100,000 matrix due to its single 
CPU structure in slow R environment. ARACNe-AP 
implementation with parallel computation can run up 
to 65 536 samples and a limited gene list [16]. FINET 
designs for the big data with scalable properties in paral-
lel computations and shared memory management.

Using FINET is easy. FINET completes all processes 
with one simple command line, with input data and 
output file names as required, and other arguments as 
optional and default. The input data is a normalized 
matrix with each column as a gene and rows as obser-
vations (see the github web for details). Anyone with or 
without a computer science background can easily com-
plete the command line.

Although developed under Linux environment, FINET 
should perform well in any operating system with Julia 
installation, including microsoftware window and apple 
machintosh.

Conclusion
This study developed algorithms and software, FINET, to 
infer network with both high accuracy and speed. Due to 
its scalability in parallel computation, FINET is specifi-
cally useful for big data analysis.

Limitation
This software should not be applied to unnormalized 
data at current stage until further development note.
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