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Abstract 

Objectives:  Immunological tolerance is mediated by CD4+CD25+ regulatory T (Treg) cells. Studies have shown that 
thymic and peripheral generations of Treg cells depend on the CD28 signaling pathway. T helper 17 (Th17) cells are 
involved in the pathophysiology of various inflammatory diseases. Cytokines, such as interleukin (IL)-6 and TGF-β, reg-
ulate the reciprocal development of Th17 and Treg cells. In CD4+ T cells, signal transducer and activator of transcrip-
tion 3 (STAT3) play a critical role in the induction of Th17 cell differentiation and inhibition of Treg cell development.

Results:  In this study, we investigated the STAT3 methylation and gene expression status in patients with MS. Our 
study demonstrated that the level of STAT3 methylation decreased in relapsing–remitting MS patient compared to 
control groups, which the decreases were statistically significant. STAT3 gene expression increased in patient group 
relative to healthy one, and the increases were found to be statistically significant. According to our findings, it can be 
suggested that DNA hypermethylation of STAT3 affects the gene expression. In addition, there is a strong and signifi-
cant negative correlation between the methylation status and mRNA level of STAT3.
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Introduction
Multiple sclerosis (MS), a chronic inflammatory disease 
of the central nervous system (CNS), has been evidenced 
to cause demyelination and axonal degeneration within 
the brain and spinal cord [1, 2]. The exact etiopathology 
of MS has not yet been clarified, but most studies have 
recognized MS as an autoimmune disease mediated by 
autoreactive CD4+ T cells [3].

Immunological tolerance is a critical factor in the pre-
vention of chronic infection, cancer, and autoimmune 
diseases [4]. Central tolerance operates in the thymus 
where autoreactive T cells with high affinity for self-anti-
gens are negatively deleted [5]. Given that not all antigens 
are present in the thymus, self-reactive T cells can enter 
the peripheral blood [5]. Therefore, central tolerance 
alone is insufficient, and peripheral tolerance mecha-
nisms are required [6]. CD4+CD25+ regulatory T (Treg) 
cells are major suppressor T lymphocytes and mediate 
peripheral tolerance [7, 8]. Forkhead box P3 (FOXP3) 
transcription factor is also necessary for the differentia-
tion of Treg cells [9, 10]. Although Treg cells differentiate 
naturally in the thymus, these cells can also be generated 
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from CD4+CD25+ naive T cells into adaptive Tregs in the 
periphery [11–13]. Adaptive Treg cells can be induced in 
the periphery when encountered with repeated antigens 
[14].

Researchers have suggested that the CD28/B7 costim-
ulatory molecule is essential for the expression of CD25 
and FOXP3 on Tregs [15–17]. It has also been indicated 
that in the absence of the CD28 costimulatory path-
way, the peripheral number of Tregs decreases [16]. 
Besides, Lck-binding motif in the cytosolic tail of CD28 is 
required for Tregs generation [18]. However, it is uncer-
tain how CD28 leads to the FOXP3 expression and Treg 
development [16]. Treg cells are involved in maintaining 
anergic state and exert suppressive function in various 
inflammation and autoimmune diseases, including rheu-
matoid arthritis, systemic lupus erythematosus, and MS 
[17, 19–21].

In MS patients, autoreactive CD4+ T cells display 
mainly T helper 17 (Th17) phenotype [3]. Cytokines, 
such as TGF-β and interleukin (IL)-6, play a key role in 
regulating Th17 cell differentiation [3, 22]. Retinoic acid 
receptor-related orphan receptor (ROR) γt transcription 
factor induces the differentiation of naive CD4+ T cells 
into Th17 cells [22, 23], which are pathogenic in MS due 
to the production of cytokines such as IL-17, IL-21, and 
IL-22 [24]. In MS, IL-17 leads to blood–brain barrier dis-
ruption and clinical disease activity and symptoms [25]. 
The upregulation of RORγt is dependent on STAT3 [26]. 
Following the binding of IL-6 to IL-6R, STAT3 is phos-
phorylated on Tyr705, dimerizes, moves into the nucleus 
and regulates the gene expression [27, 28]. STAT3 func-
tions distinctly in the Th17 development and regulation 
of the Th17/Treg balance [23], and STAT3 deficiency 
impairs RORɣt expression, giving rise to the increased 
expression of FOXP3 [29]. Therefore, dysregulation of 
STAT3 results in the development of various inflamma-
tory diseases, and loss of STAT3 in naïve CD4+ T cells 
inhibits the development of CNS inflammatory diseases 
[30, 31]. Several studies have introduced STAT3 as a risk 
factor allele for MS disease susceptibility [32–34]. These 
observations persuaded us to investigate whether the 
hypo- or hyper-methylation of STAT3 in CD4+ T cells is 
associated with the susceptibility of MS.

In this study, we display that in CD4+ T cells, 
STAT3 methylation decreases in relapsing–remitting 
MS (RRMS), whereas the gene expression of STAT3 
increases.

Main text
Methods
Study groups
A total of 50 MS patients (36 males and 14 females) aged 
between 19 and 65  years with clinically RRMS were 

collected from the Imam Reza Hospital of Tabriz Univer-
sity of Medical Sciences, East Azerbaijan Province, Iran. 
All the patients had RRMS according to the McDonald’s 
diagnostic criteria and were in the remission clinical 
phase. Disease remission was defined as improvement 
from baseline clinical status for at least three months. 
The cases were weekly being treated with interferon beta. 
Normal controls enrolled in this study were composed of 
50 age, gender, and ethnically matched healthy subjects 
without any clinical or laboratory signs of autoimmune 
or inflammatory diseases. A written informed consent 
was obtained from each case, and the study protocol was 
approved by the Ethics Committee of the Tabriz Univer-
sity of Medical Sciences. The clinical/pathological data of 
both RRMS and controls are summarized in Table 1.

Blood sampling and cell isolation
Peripheral blood samples (20  ml) were obtained from 
all the patients with RRMS. After the blood collection, 
peripheral blood mononuclear cells were isolated using 
Ficoll-Paque™plus gradient centrifugation (Biosera, UK) 
within 12 h. The isolation of CD4+ T cells from periph-
eral blood mononuclear cells was carried out with the 
Miltenyi Biotech’s MACS System. The CD4+ MACS Iso-
lation Kit was applied to positively select CD4+ T cells. 
The purity of the CD4+ T cells was assessed with flow 
cytometry and assigned to be greater than 90%.

DNA extraction and methylation‑specific quantitative 
polymerase chain reaction (MS‑qPCR)
Total DNA isolated from the CD4+ T cells was gathered 
in EDTA-containing tubes by the salting-out method. 
STAT3 promoter sequences and data were obtained from 
the NCBI (National Center for Biotechnology Informa-
tion) database. STAT3 expression primers were designed 
by the aid of the PrimerQuest Tool, and the methylation- 
and demethylation (DM)-specific primers for STAT3 
were designed using MethPrimer online database and 
OLIGO software. The primer sequences and product size 
for STAT3 are shown in Table 2. The methylation status 
of STAT3 was analyzed by applying the MS‐qPCR. Power 

Table 1  Clinical characteristics of  RRMS and  control 
subjects

Data are shown as mean ± SD or frequencies

NA non-applicable, EDSS expanded disability status scale

Characteristics RRMS group (n = 50) Control group (n = 50)

Age 35.08 (19–65) 33.01 (22–51)

Gender (female/male) 36/14 31/19

EDSS 1.75 ± 0.31 NA

Disease duration 4.9 ± 1.6 (2–15 years) NA
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SYBR Green reagent (Thermo Fisher Scientific, USA) was 
utilized for MS-qPCR. The DM rate of STAT3 was calcu-
lated by a previously described formula [35, 36] in which 
DM is the ratio of amplification efficiency of the methyl-
ated to unmethylated samples:

RNA isolation and reverse transcriptase (RT)‑PCR
Total RNA from the collected CD4+ T cells was isolated 
using TRIzol Reagent (Life Technologies, USA) based 
on the manufacturer’s instructions. RNA was then 
reverse transcribed with the Prime Script™ RT reagent 
Kit (Takara, Japan) as per the protocol recommended 
by manufacturer. Subsequently, SYBR Green reagent 
(Thermo Fisher Scientific) was used for quatitative 
real‐time (qRT‐PCR). Pfaffl method [37] was applied 
to calculate the relative gene expression. PCR cycles 
included a holding cycle at 95 °C for 15 min and held at 
80 °C before the addition of 1.25 units of Taq polymer-
ase (Invitrogen, USA). The forward and reverse primers 
used for STAT3 expression were comprised of 5′-TGG​
AGC​TGC​GGC​AGT​TTC​TG-3′ and 5′-CCG​CAT​CTG​
GTC​CAG​CGC​AG-3′, respectively [38]. For STAT3, 
the temperature condition was as follows: 30 cycles of 
95 °C for 1 min, 63 °C for 1 min, followed by one cycle 
of 72 °C for 5 min. The mRNA expression level was nor-
malized against glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) mRNA. STAT3 primer sequences are 
listed in Table 2.

Statistical analysis
Statistical analysis was performed with SPSS software 
version 25 (IBM Corp., Armonk, NY, USA). All the data 
were presented as mean ± standard error of mean (SEM). 
Kolmogorov–Smirnov test with P–P plot and Q–Q plot 
was employed for normal distributions. The differences 

DM% = 100/[1+ 2(Ct.TG− Ct.CG)].

in the mRNA level of STAT3 between RRMS patient 
and control groups were evaluated by unpaired t-test. A 
P-value < 0.05 was considered as statistically significant 
difference.

Results
STAT3 expression in the study groups
Our results showed that the STAT3 expression level 
increased in patients in comparison with the control 
group (P-value < 0.0001; Fig. 1a).

STAT3 methylation status in the study groups
Methylation level (% M) of the promoter region of STAT3 
was present in 23% (12/50) of MS cases, while this level 
was found in 62.9% (45/50) of the controls. The decrease 
level was statistically significant (P-value < 0.0001). In 
addition, a significant and strong negative correlation 
was found between the STAT3 gene methylation level 
and mRNA expression level for the methylation assay 
(Figs. 1b–e).

Discussion
FOXP3 is an essential transcription factor in the differ-
entiation of Treg cells [40, 41]. Immunodysregulation, 
polyendocrinopathy, enteropathy, X-linked syndrome 
are disorders found in patients with FOXP3 mutations 
[22, 40]. FOXP3-deficient mice also exhibit eosinophilia, 
hyperimmunoglobulinemia E syndrome, and dysregu-
lated production of Th1 and Th2 cytokines [42]. These 
observations verifies the major role of FOXP3 in Treg 
development, control immune tolerance, and homeo-
stasis [15]. The CD28 costimulatory molecule is another 
factor required for the Treg development and peripheral 
conversion. Th17 cells have immunopathogenic poten-
tial, and their responses have been associated with the 
murine models of collagen-induced arthritis and experi-
mental autoimmune encephalitis.

STAT3 is one of the regulating factors in the recipro-
cal development of Th17 cells and Tregs. A previous 
study has been shown that STAT3 is directly involved in 
the FOXP3 expression and Treg development [27]. In the 
present study, we observed STAT3 hypormethylation in 
RRMS patients and found that the STAT3 gene expres-
sion increases in RRMS patients, but not in the control 
subjects.

The results of the STAT3 methylation level and 
gene expression status in our study demonstrated 
the decreased level of methylation and the increased 
mean of mRNA expression in the patient group com-
pared to the healthy one (hypomethylated). Therefore, 
our findings reveal a critical novel epigenetic event 
and new insights into the pathogenesis of MS disease. 

Table 2  PCR primers, melting temperature, and  product 
size

Primers Sequence Melting 
temperature

Product 
Sizes 
(bp)

STAT3 MF TAT​CGT​TTT​TTG​TAT​TCG​TTT​
GTA​C

58.2 192

MR CCT​ACT​TTA​AAC​TTC​AAT​TTC​
TAC​GTA​

59.0

UMF TTG​TTT​TTT​GTA​TTT​GTT​TGT​
ATG​G

57.5

UMR CCT​ACT​TTA​AAC​TTC​AAT​TTC​
TAC​ATA​

57.5 190



Page 4 of 6Hosseini et al. BMC Res Notes          (2020) 13:568 

Fig. 1  The gene expression and promoter methylation level of the STAT3 gene in MS and control groups. a STAT3 gene expression in patients 
compared with control subjects. Mean fold change in MS patients and control group was 1.000 ± 0.024 and 0.250 ± 0.014, respectively 
(P-value < 0.0001). b The methylation level (% M) of STAT3 in MS patients compared with control group. The red dots are individual values, and boxes 
are the mean methylation for patient (30.56 ± 1.317) and control groups (59.08 ± 1.986). c, d Correlation analysis between methylation status and 
gene expression level of STAT3 in patients (R2 = 0.8967, P-value < 0.0001, regression analysis) and control (R2 = 0.9256, P-value < 0.0001, regression 
analysis) group. e Negative and positive controls for methylation assays. 5-Azacytidine and DNA sample treated with SssI methyltransferase were 
used as negative and positive controls, respectively [39]. (*P-value < 0.05, **P-value < 0.01, ***P-value < 0.001, ****P-value < 0.0001).
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Regulation of the STAT3 in the present study maybe 
a novel promising treatment for MS as it has formerly 
been demonstrated that highly activated Th17 activity 
is related to STAT3 mutations [43]. Moreover, germline 
mutations in STAT3 causes the lymphoproliferation 
and early-onset autoimmunity [44]. An earlier investi-
gation has reflected that STAT3-targeted therapeutics 
prevents experimental autoimmune uveitis mediated 
by Th17 cells [45]. STAT3 inhibitors are also effective in 
CNS autoimmune diseases [46].

Taken together, these findings affirm the role of 
STAT3 in Th17-mediated immune diseases. However, 
further studies are needed to fully elucidate the exact 
role of STAT3 in MS disease. STAT3 induction in the 
autoimmune therapy protocol is recommended.

Limitations
The major concern of this study is the examination of 
STAT3 methylation on limited MS patients. The test 
of methylation on samples from various regions and in 
large areas in the country is suggested.
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