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RESEARCH NOTE

A comparative study on predicting 
influenza outbreaks using different feature 
spaces: application of influenza‑like illness data 
from Early Warning Alert and Response System 
in Syria
Ali Darwish*, Yasser Rahhal and Assef Jafar

Abstract 

Objective:  An accurate forecasting of outbreaks of influenza-like illness (ILI) could support public health officials 
to suggest public health actions earlier. We investigated the performance of three different feature spaces in differ-
ent models to forecast the weekly ILI rate in Syria using EWARS data from World Health Organization (WHO). Time 
series feature space was first used and we applied the seven models which are Naïve, Average, Seasonal naïve, drift, 
dynamic harmonic regression (Dhr), seasonal and trend decomposition using loess (STL) and TBATS. The Second 
feature space is like some state-of-the-art, which we named 53− weeks− before_52− first − order − difference fea-
ture space. The third one, we proposed and named n− years− before_m− weeks− around (YnWm) feature space. 
Machine learning (ML) and deep learning (DL) model were applied to the second and third feature spaces (general-
ized linear model (GLM), support vector regression (SVR), gradient boosting (GB), random forest (RF) and long short 
term memory (LSTM)).

Results:  It was indicated that the LSTM model of four layers with 1− year − before_4− weeks− around feature 
space gave more accurate results than other models and reached the lowest MAPE of 3.52% and the lowest RMSE of 
0.01662. I hope that this modelling methodology can be applied in other countries and therefore help prevent and 
control influenza worldwide.
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Introduction
Influenza epidemic results in three to five million cases 
of severe illnesses and approximately 290,000 to 650,000 
deaths worldwide each year [1]. WHO’s Early Warn-
ing, Alert and Response System (EWARS) is designed to 
improve disease outbreak detection in emergency set-
tings. The system has been built in SYRIA since 2012 

to collect and detect near real-time information on 
several outbreaks including influenza [2]. The Existing 
researches on modeling influenza epidemic falls into two 
categories: Mechanistic and Statistical models. They are 
summarized in literature reviews [3–6] and in the CDC 
comparisons [7, 8]. Researches under statistical category 
vary according to the different Features and methods 
used. Some researchers used the number of patients in 
the past as features [9–13], while others integrated other 
data sources to predict the number of patients in the 
future. Examples of these sources are climatological data 
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[14, 15], search engine queries [16–19], public comments 
on social media like Twitter [20, 21], online information-
seeking behavior on websites like Wikipedia [22, 23] and 
a combination of multiple data streams [15, 24–26]. Dif-
ferent methods on these features were applied. Some 
researches treated the problem as an instance of more 
general time series forecasting using time series meth-
ods (ARIMA, ARIMA-STL, GARMA) [9, 10, 17, 27], 
while others used ML methods including Stacked lin-
ear regression [24, 26], AdaBoost regression with deci-
sion trees [26], GB [12], SVR [26, 28], elastic net [28] 
RF [11, 12, 28], Artificial Neural Network (ANN) [12, 
20]. Recently, a DL method Called LSTM has attracted 
much interest in ILI prediction and gave excellent results, 
which are more accurate than those of other methods 
[12, 13, 15, 29]. In addition to investigating the perfor-
mance of the three different feature spaces with multiple 
time-series, ML and DL based methods to predict the 
weekly ILI rate in Syria; we proposed novel future spaces 
n− years − before_m− weeks − around that integrate 
into state-of-the-art ML and DL methods. There are two 
important contributions of this paper. First, the use of 
n− years − before_m− weeks − around future spaces to 
predict ILI rate. Second, analyzing multiple models per-
formance over the EWARS data from WHO in Syria.

Main text
Materials and methods
Data
We collected SYRIA flu data from the EWARS reports 
published by WHO on the website [30]. We only used 
the Flu Data from the first week of 2014 to the 42nd week 
of 2018. To avoid any possible population variations, we 
adopted the ILI rates as predictors (x) and responses (y) 
of our models.

Figure 1a illustrates the raw data. The Y-axis represents 
the weekly ILI rate, and the X-axis represents the time 
series. The seasonality is obvious, as shown in Fig 1b. We 
split the data into two parts: the first 90% was the training 
set and the last 10% was the testing set.

Feature space
In this study, we reviewed three types of feature 
space. We named them as (time series feature space, 
53− weeks − before_52− first − order − difference fea-
ture space and n− years − before_m− weeks − around 
feature space). Tables S1 and S2 illustrate the data set, 
response, predictors and the pretreatment of the source 
data. An additional pdf file shows this in more detail (see 
Additional file 1).

ILI rate = ILI number/Total number of illnesses

Time series feature space (fs1) We treated the ILI 
weekly data as time series with seasonal value 52.
53− weeks − before_52− first − order − differences

feature space (fs2) Some previous studies found that 
using the ILI rate of the past 53 weeks and the 52 first-
order differences helped improve the results of the pre-
diction models for influenza data [11–13].
n− years − before_m− weeks − around(YnWm) fea-

ture spaces (fs3) We reviewed a maximum of 3 years 
before and 5 weeks around. To predict the ILI rate of week 
WX of year YX, We used the ILI rate of the past m weeks 
before WX in YX, the ILI rate of past n seasonal weeks 
and the ILI rate of the m weeks around seasonal weeks. 
In the case of 1− year − before_4 − weeks − around , 
the response y is the ILI rate of week 30 of year 2017 
then the predictors are the ILI rates of weeks 29, 28, 
27, 26 from year 2017 and the ILI rates of weeks 26, 
27, 28, 29, 30, 31, 32, 33, 34 from year 2016. The num-
ber of predictors and rows changed depending on the 
value of n and m and we had to drop some data rows so 
that we get the same training data length for any value 
of n and m. Figure 2a illustrates the feature spaces with 
examples of 3− years − before_5− weeks − around and 
1− year − before_4 − weeks − around feature spaces.

Models
The models, programming languages, and libraries, 
which were used in this study were illustrated in Addi-
tional file  1. We trained all models in R Programming 
Language (version 3.4.4). For time series models, we used 
the “forecast” package (version 8.4). For ML models, we 
applied the caret package (Version 6.0-8). For DL models, 
we used the Keras package (Version 2.2.4) based on Ten-
sorflow (Version 1.10). A personal computer with Intel 
I7-8550U processor, 8 GB of RAM and an NVIDIA 130 
MX GPU was used for the experiments. Each experiment 
takes approximately 1 to 30 min to train the model. The 
prediction takes less than 5 s on the same hardware.

Metrics
We compared different models with different feature 
spaces using the mean absolute percentage error (MAPE) 
and root mean squared error (RMSE) as key performance 
indicators (KPIs).

where At is the actual value and Ft is the forecasted value.
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Results
fs1 with time series models
Seven methods (Average, Naïve, Seasonal Naïve, Drift, 
STL, DHR and TBATS) were applied in a recursive way. 
We trained the model on the training data set then pre-
dicted the ILI rate of week number x then we repeated 
the process by combining the actual ILI rate of week 
number x with the training data set. The metrics of all 
models are presented in Table  1(a), (b). it was indicated 
that the TBATS model outperformed other six models 
in predicting weekly ILI rate (MAPE = 4.66%, RMSE 
= 0.03096). Our explanation of the success of TBATS 
model is that the seasonality is allowed to change slowly 

over time in a TBATS model, while DHR, STL, Seasonal 
Naïve models force the seasonal patterns to repeat peri-
odically without changing and Average, Naïve, Drift 
models do not depend on the seasonal patterns. We con-
sidered TBATS model a baseline in comparing the results 
of the following models.

fs2 with ML and DL models
We applied four ML methods (GLM, SVR, GB and RF) 
and two DL methods (LSTM with 3 layers and LSTM 
with 4 layers). Table  1(a), (b) shows that none of the 
models achieved better results than the baseline model 
in MAPE metric but in RMSE metric, the LSTM model 

Fig. 1  a The ILI rate in SYRIA from the first week of 2014 to the 42nd week of 2018; The Y-axis represents the weekly ILI rate, and the X-axis 
represents the time series. b The ILI rate in SYRIA from the first week of 2014 to the 42nd week of 2018 (seasonal plot); The Y-axis represents the 
weekly ILI rate, and the X-axis represents the weeks
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of 3 layers (RMSE = 0.02294) outperformed the baseline 
model and all otehr models with fs1 and fs2 .

fs3 with ML AND DL models
According to 0 <= n <= 3 and 0 <= m <= 5 we 
trained 23 feature spaces in four ML methods (GLM, 
SVR, GB and RF) and two DL methods (LSTM with 
3 layers and LSTM with 4 layers). Totally, we made 
138 experiments with results shown in Table   1(a), 
(b). In accordance with MAPE metric, We found that 
22 experiments show a decrease in metrics less than 
that of the baseline model (1 experiment: by using GB 
model with Y2W2 feature space, 10 experiments: by 
using LSTM model of 3 layers with “Y1Wm, Y2Wm: 
excluding m=0 and m=4” feature spaces, 11 experi-
ments: by using LSTM model of 4 layers with “Y1Wm: 

excluding m=1,Y2Wm: excluding m=5,Y3w1” feature 
spaces) but In accordance with RMSE metric, We found 
that 44 experiments show a decrease in metrics less 
than that of the baseline model (1 experiment: by using 
GB model with Y2W2 feature space, 20 experiments: 
by using LSTM model of 3 layers with “YnWm: exclud-
ing n=3 with m=3,4,5” feature spaces, 23 experiments: 
by using LSTM model of 4 layers with “YnWm” feature 
spaces). we achieved the best result (MAPE = 3.52%, 
RMSE = 0.01662) by using LSTM model of 4 layers 
with Y1W4 feature space. in comparison to models 
with fs2, the results show that for any model used, there 
are at least one value to n and m in fs3 that achieved 
better result than the same model with fs3. Our expla-
nation of the success of this feature space is that models 

Fig. 2  a n− years− before_m− weeks− around(YnWm) feature spaces. b The real and prediction of weekly ILI rate of the testing set for TBATS 
with fs1: time series feature space, LSTM of 3 layers with fs2: 53− weeks− before_52− first − order − differences feature space, LSTM of 4 layers 
with fs3: n− years− before_m− weeks− around(y1w4) feature space
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Table 1  The MAPEs and  RMSEs of  the  testing set for  all methods applied on  fs1: time series and  fs2: 
53− weeks− before_52− first − order − differences and fs3: n− years− before_m− weeks− around feature space

(a) The MAPEs%

Models Average Naïve Seasonal naïve Drift STL DHR TBATS

Features:fs1 11.31 5.69 7.9 5.7 5.72 5.12 4.66

Models GLM SVR GB RF 3-Layers-LSTM 4-Layers-LSTM

Features:fs2 6.16 5.83 5.94 5.89 4.72 4.9

Models GLM SVR GB RF 3-Layers-LSTM 4-Layers-LSTM

Features:fs3

Y0W1 5.69 5.68 6.75 6.86 5.66 5.67

Y0W2 5.76 5.72 7.1 6.3 5.34 5.38

Y0W3 5.73 5.73 6.69 6.29 5.36 5.27

Y0W4 5.49 5.61 6.92 6.19 5.44 5.3

Y0W5 5.68 5.71 7.29 5.91 5.47 5.39

Y1W0 6.48 6.72 6.89 9.27 4.5 4.12

Y2W0 6.17 5.85 6.47 8.91 4.67 4.6

Y3W0 5.96 6.4 8.37 9.08 4.82 4.69

Y1W1 5.12 5.23 6.36 6.94 3.94 4.8

Y1W2 5.61 5 5.26 6.48 4.09 4.09

Y1W3 6.22 5.27 6.22 6.89 3.97 3.63

Y1W4 6.22 5.3 5.7 7.11 3.89 3.52

Y1W5 6.08 5.23 6.98 6.18 4.46 3.54

Y2W1 5.26 5.32 5.56 7.22 4.44 4.03

Y2W2 6.01 5.08 4.24 5.78 4.22 4.3

Y2W3 7.43 5.68 6.19 6.17 4.43 3.99

Y2W4 7.33 5.4 6.71 6.36 4.81 4.39

Y2W5 7.23 5.34 5.53 6.44 4.61 4.71

Y3W1 6.01 5.43 6.65 6.9 4.72 4.37

Y3W2 6.86 5.49 5.75 6.22 5.5 4.74

Y3W3 7.74 5.76 6.18 6.34 6.21 5.42

Y3W4 8.24 5.92 6.97 6.24 6.43 5.92

Y3W5 8.56 6.14 6.24 6.48 6.78 6.13

(b) The RMSEs

Models Average Naïve Seasonal naïve Drift STL DHR TBATS

Features:fs1 0.05796 0.03925 0.04454 0.03931 0.03672 0.03179 0.03096

Models GLM SVR GB RF 3-Layers-LSTM 4-Layers-LSTM

Features:fs2 0.03743 0.03643 0.03687 0.03699 0.02294 0.0237

Models GLM SVR GB RF 3-Layers-LSTM 4-Layers-LSTM

Features:fs3

Y0W1 0.03852 0.03866 0.04389 0.04245 0.02744 0.02767

Y0W2 0.03933 0.03923 0.04525 0.03868 0.02598 0.02593

Y0W3 0.03754 0.03861 0.04286 0.03915 0.02631 0.02549

Y0W4 0.03689 0.03755 0.04355 0.0392 0.02666 0.02566

Y0W5 0.03686 0.03798 0.04528 0.03825 0.02611 0.02565

Y1W0 0.03781 0.03874 0.04163 0.04927 0.02113 0.01985

Y2W0 0.03685 0.03534 0.04096 0.04761 0.02252 0.02189

Y3W0 0.03629 0.03965 0.04526 0.05006 0.02312 0.02323
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can learn the seasonality by n years before and can rec-
ognize the trend of the data by m weeks around.

The temporal variation of the real weekly ILI rate and 
the predicted values obtained from the three models 
(the best result in each feature space) for the test period 
were plotted in Fig 2b. As can be seen, the predicted val-
ues of weekly ILI rate were in a good agreement with 
their related observed values and the used models could 
be used to model the weekly ILI rate. Moreover, LSTM 
model of 4 layers with fs3 resulted in better predicted val-
ues and trend between them for the observed values of 
ILI rate than the other models especially when there is a 
change in trend between observations.

Discussion
The accurate forecast of an outbreak of ILI could sup-
port public health officials in taking public health actions, 
such as allocating or temporarily readjusting medical 
resources for hospitals and medical centers. The ILI rate 
varies from year to year depending on multiple factors. 
Despite this difference, the ILI rate plot in each year takes 
a semi-constant form with an increase or decrease com-
pared to previous years and could be predicted by using 
specific observations of past years with statistical models. 

Performance of statistical models is data dependent and 
there is no model that performs well in all situations. 
Therefore, evaluating the performance of different models 
is of great importance as they provide useful and impor-
tant information regarding strengths and weaknesses of 
the models and gives an insight to use better models for 
forecasting purposes. Some sate of the arts [11, 12] utilize 
53 weeks before with 52 first order difference with dif-
ferent statistical models and found that both the recent 
observations and the later observations with the differ-
ence were interesting and had significant influence on 
the predication. In this study, we proposed novel future 
spaces, namely n− years − before_m− weeks − around , 
and compared to some existing future spaces that utilize 
historical observations in different ways by integrating 
it into state-of-the-art ML and DL models. Our results 
revealed the success of our future space for some values 
of n and m and its failure for other values to outperform 
other future spaces in prediction ILI rate in Syria. This 
fact suggests that combining carefully selected number of 
Nearby Historical Observations with Carefully selected 
number of seasonal Historical Observations is advan-
tageous over simply choosing all Historical Observa-
tions. While the results presented here are for ILI within 

Italics number indicate best result

Table 1  (continued)

(b) The RMSEs

Models Average Naïve Seasonal naïve Drift STL DHR TBATS

Features:fs1 0.05796 0.03925 0.04454 0.03931 0.03672 0.03179 0.03096

Models GLM SVR GB RF 3-Layers-LSTM 4-Layers-LSTM

Features:fs2 0.03743 0.03643 0.03687 0.03699 0.02294 0.0237

Models GLM SVR GB RF 3-Layers-LSTM 4-Layers-LSTM

Features:fs3

Y1W1 0.03341 0.03361 0.03851 0.0396 0.01929 0.02296

Y1W2 0.03654 0.03272 0.02968 0.03826 0.01938 0.0198

Y1W3 0.03742 0.03309 0.03434 0.03768 0.01873 0.01763

Y1W4 0.03745 0.03265 0.03369 0.03851 0.01825 0.01662

Y1W5 0.03652 0.03175 0.04083 0.0335 0.02139 0.01682

Y2W1 0.03472 0.034 0.03515 0.04029 0.02108 0.01984

Y2W2 0.03886 0.03352 0.0248 0.03327 0.01994 0.02276

Y2W3 0.04222 0.03381 0.03401 0.03705 0.02094 0.01926

Y2W4 0.04159 0.03249 0.03787 0.03909 0.02288 0.02122

Y2W5 0.04276 0.03291 0.03502 0.03929 0.02148 0.02276

Y3W1 0.0362 0.03305 0.03476 0.03988 0.02253 0.02121

Y3W2 0.04038 0.03156 0.03382 0.03729 0.02659 0.02319

Y3W3 0.04366 0.03357 0.03517 0.03822 0.0313 0.02588

Y3W4 0.04539 0.03405 0.04228 0.03822 0.03226 0.02919

Y3W5 0.05098 0.03592 0.03747 0.03928 0.03388 0.03064
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Syria, our novel future spaces shows promise to be easily 
extended to accurately track not only influenza in other 
countries but also other infectious diseases Through 
careful tuning of the values of n and m. We believe that 
it is up to policymakers in organizations concerned with 
EWARS to decide whether these forecasts are ready for 
use in decision support at the current level of accuracy.

In conclusion, we performed Naïve, Average, Sea-
sonal naïve, Drift, DHR, STL, TBATS, GLM, SVR, 
GB, RF and LSTM methods with different feature 
spaces to predict the weekly ILI rate using EWARS 
data from WHO in Syria. We found that the TBATS 
method with time series feature space gave bet-
ter results than those resulted from all methods in 
53− weeks − before_52− first − order − differences 
feature space. We also found that the GLM, SVR, GB, 
RF and LSTM methods with a good choice to n and 
m in n− years − before_m− weeks − around fea-
ture space gave better results than those resulted in 
53− weeks − before_52− first − order − differences fea-
ture space. In all the models, the LSTM model of 4 layers 
reached the lowest MAPE (3.52%) and the lowest RMSE 
(0.01662).

Limitations
Climatological data and Pharmaceutical Sales could be 
used to achieve better performance of the used models. 
We would like to investigate the impact of these param-
eters in future work.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1310​4-020-4889-5.

Additional file 1. Details about feature spaces and programing lan-
guages and libraries. .pdf file with three tables: the first table explaint the 
53− weeks− before_52− first − order − difference feature space, the sec-
ond table explaint the N − years− before_m− weeks− around feature 
space and the third one show the models, programming languages, and 
libraries, which were used in this study.

Additional file 2. Dataset used in manuscript. .csv file contains the EWARS 
data about ILI in SYRIA from the first week of 2014 to the the 42nd week 
of 2018.
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