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Abstract 

Objective:  Extraintestinal Pathogenic E. coli (ExPEC), are responsible for host diseases such as Neonatal Meningitis 
Escherichia coli (NMEC), the second-leading cause of neonatal bacterial meningitis, Avian Pathogenic E. coli (APEC), a 
cause of extraintestinal disease in poultry, and Uropathogenic E. coli (UPEC), the most common cause of urinary tract 
infections. Virulence factors associated with NMEC include outer membrane protein A (OmpA) and type I fimbriae 
(FimH), which also occur in APEC and UPEC. OmpA contributes to NMEC’s ability to cross the blood–brain barrier, 
persist in the bloodstream and has been identified as a potential vaccine target for ExPEC, however the protein has 
amino acid variants, which may influence virulence of strains or alter vaccine efficacy. Although OmpA is present in 
virtually all E. coli, differences in its amino acid residues have yet to be surveyed in ExPEC.

Results:  Here the ompA gene (n = 399) from ExPEC collections were sequenced and translated in silico. Twenty-five 
different OmpA polymorphism patterns were identified. Seven polymorphism patterns were significantly associated 
with an ExPEC subpathotype, but chromosomal history most likely accounts for most differences found. The differ-
ences in OmpA protein sequences suggest that OmpA may influence variation in virulence and host specificity within 
ExPEC subpathotypes.
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Introduction
Members of the Extraintestinal Pathogenic Escherichia 
coli (ExPEC) pathotype are adapted for an extraintestinal 
lifestyle. ExPEC subpathotypes include Neonatal Men-
ingitis E. coli (NMEC), Uropathogenic E. coli (UPEC), 
and Avian Pathogenic E. coli (APEC), which are named 
by the host system or species they impact [1, 2]. APEC, 
the causative agent of avian colibacillosis is responsible 
for significant morbidity, mortality, and financial losses 
to the poultry production worldwide [1]. UPEC is the 
leading cause of uncomplicated and catheter-associated 
urinary tract infections in humans, and serious UPEC 

infections can result in pyelonephritis, potentially lead-
ing to sepsis or death [3]. NMEC is the causative agent of 
28–29% of neonatal bacterial meningitis cases [4, 5] with 
a mortality rate of 33% and survivors often suffer lifelong 
disability [5]. Identifying common and distinguishing 
virulence factors among ExPEC subpathotypes are key 
to explaining the pathogenesis or virulence of the patho-
type or subpathotypes. One virulence factor of particular 
interest in ExPEC is OmpA, an outer membrane protein 
that promotes bloodstream survival and assists NMEC in 
crossing the blood brain barrier [6–8].

Structurally, OmpA consists of eight membrane-
spanning β-strands that form a β-barrel [9]. The N-ter-
minal domain consists of the first 169 amino acids and 
was characterized by Patutsch and Shulz [10]. The 
C-terminal domain was proposed to interact with the 
peptidoglycan layer [11], and has yet to be crystalized 
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[12]. It has been shown that OmpA can exist as a mon-
omer or dimer and the soluble C-terminal domain of 
OmpA is responsible for protein dimerization [12]. 
The OmpA protein forms four extracellular loops that 
exhibit residue patterns encoded by allelic variants in 
the ompA gene across the protein’s loops [13]. These 
“alleles” have been described previously [13–15]. Struc-
turally, the OmpA loops contribute to NMEC’s survival 
and entry into human brain microvascular endothelial 
cells (HBMEC) by binding the Ecgp glycoprotein [16, 
17]. Gu et al. [18] suggested that the OmpA loops might 
be a good vaccine target to prevent infection. OmpA 
also contributes to the binding and survival of NMEC 
in macrophages [19]. For UPEC, OmpA promotes 
pathogenesis associated with cystitis [20]. Addition-
ally, OmpA contributes to binding tropism by different 
types of E. coli [21] and acts as a receptor for bacterio-
phages [13, 14].

Although the contribution of OmpA to NMEC 
pathogenesis has been demonstrated, the importance 
of OmpA among other ExPEC subpathotypes, such as 
APEC and UPEC, remains relatively underexplored. 
OmpA is present in virtually all E. coli, including com-
mensal strains [14, 22], but is OmpA’s relationship 
to NMEC virulence unique and ascribable to certain 
polymorphisms? Are certain polymorphisms in OmpA 
unique to NMEC or other ExPEC? Answering such 
questions may provide insight into ExPEC’s ability to 
cause disease, its evolution, host specificity, or tissue 
proclivity.

This study assessed differences in OmpA amino acid 
sequences among ExPEC subpathotypes. An issue that 
might complicate such an analysis is the lack of chro-
mosomal relatedness of the E. coli being compared since 
ExPEC subpathotypes have different phylogenetic group 
distributions [23]. An association of chromosomal his-
tory and polymorphism patterns in a virulence factor has 
precedence as polymorphisms in the adhesin FimH, a vir-
ulence factor of ExPEC, appear to correspond with phy-
logenetic group assignment and increased virulence [24]. 
Thus, this study examined OmpA amino acid sequences 
of ExPEC assigned using Clermont’s 2013 analysis.

Main text
Materials and methods
ExPEC strains and DNA isolation
A total of 399 ExPEC were used in this study randomly 
selected from APEC, NMEC, and UPEC collections pre-
viously described [25–28]. All isolates were phylogeneti-
cally grouped by Clermont’s phylogenetic typing scheme 
(Additional file 1: Table S1) [23, 25]. DNA template was 
prepared as described previously [25].

ompA gene amplification and sequencing
The ompA gene was amplified from each strain twice via 
PCR with two primer sets and PCR reactions (Additional 
file 2: Table S2). PCR conditions were 94 °C for 3 min, fol-
lowed by 30 cycles of amplification (denaturation: 30 s at 
94 °C, annealing: 30 s at 54 °C, extension: 72 °C for 90 s), 
and a final extension at 72 °C for 7 min using a MasterCy-
cler Gradient thermocycler (Eppendorf, Germany). 10 µl 
of PCR products were confirmed on a 2% agarose gel 
in 1x TAE buffer and remaining PCR products purified 
using ExoSAP-IT (Affymetrix, ThermoFisher) to remove 
primers and dNTPs before they were Sanger sequenced 
at the Iowa State University DNA Sequencing Facility 
(Ames, IA).

In silico analysis of ompA
Nucleotide sequences of ompA were imported into 
Geneious (v. 10.2, BioMatters LTD, Auckland, New Zea-
land) aligned, trimmed for consistent length and trans-
lated in silico. Residues were aligned using the Geneious 
aligner with the Blosum 62 cost matrix, and non-unique 
residues removed. Polymorphisms at any position occur-
ring fewer than three times among all OmpA sequences 
were interpreted as potential sequencing errors and 
excluded from analysis. The resulting amino acid 
sequences were used as polymorphism pattern strings 
and imported into R for analysis. TidyVerse and ggplot2 
packages were used to conduct analyses and generate fig-
ures [29, 30]. Data regarding isolate, subpathotype, poly-
morphism patterns, and phylogenetic group assignment 
is contained in Additional file 3.

Statistical analysis
The Chi square test of homogeneity was used to deter-
mine statistically significant differences among the 
ExPEC subpathotypes for any polymorphism pattern 
which occurred greater than 20 times. Significance for all 
statistical tests was determined at the α = 0.05 level.

Results and discussion
The OmpA protein has unique polymorphism patterns
Analysis of the ompA sequences identified 22 different 
OmpA predicted polymorphism sites among all ExPEC 
strains examined (Fig.  1). Most OmpA polymorphisms 
were located within the N-terminus region or the loops 
of the protein, which have previously been designated as 
part of the N-terminal domain (Fig.  1). Polymorphism 
patterns were identified based on the unique string of 
polymorphisms for each isolate, and each polymorphism 
pattern was assigned an N-terminus (identified by letters) 
and dimerization region (identified by numbers) as pre-
viously characterized in the literature (Additional file  4: 
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Table S3) [13–15, 21]. OmpA patterns were compared to 
Escherichia coli, MG1655 (Genbank: U00096.3) [31, 32] 
and 9% of ExPEC had the same polymorphism pattern 
(E2) (Additional file  4: Table  S3). The OmpA sequence 
is: MKKTAIAIAVALAGFATVAQAAPKDNTWY​
TGA​KLGWSQYHDTGFINNNGPTHENQLGAGA-
FGGYQVNPYVGFEMGYDWLGRMPYKGSVEN-
GAYK AQ GVQLTAKLGYPITDDLDIYTRLG GM-
VWRADTKSNVYGKNHDTGVSPVFAGGVEYAIT-
PEIATRLEYQWTNNIGDAHTIGTRPDNGMLSLG-
VSYRFGQGEAAPVVAPAPAPAPEVQTKHFTLKSD-
VLFNFNKATLKPEGQAALDQLYSQLSNLDPKDGS-
VVVLGYTDRIGSDAYNQGLSERRAQSVVDYLISK-
GIPADKISARGMGESNPVTGNTCDNVKQRAALID-
CLAPDRRVEIEVKGIKD. All polymorphisms identified 
in this study except for the polymorphism numbered 21 
were previously described in the literature [21]. Poly-
morphism pattern B5 encoded a valine at this position, 
while all other polymorphism patterns encoded an ala-
nine. This pattern was found in 3.5% of the APEC but 
was absent in NMEC and UPEC strains (Additional file 4: 
Table S3).

Polymorphism patterns can vary with the ExPEC 
subpathotype
Statistically significant differences were observed in the 
distribution of seven polymorphism patterns among 

APEC, NMEC, and UPEC examined (Fig. 2). APEC were 
more likely to exhibit OmpA polymorphism patterns B2, 
D3, E2, and F2; whereas, UPEC were likely to exhibit pat-
terns A1, A3, C4, D1, G4, and H2. The majority of NMEC 
contained OmpA polymorphism pattern A1, but NMEC 
also had a greater relative prevalence of polymorphism 
patterns B2, C1, and C3 than one or more of the other 
subpathotypes (Fig.  2). Although most of these differ-
ences were statistically significant, the composition of 
the phylogenetic groups within the ExPEC subpathotypes 
differed [25] and as a result, polymorphism patterns of 
APEC, NMEC, and UPEC were analyzed against phylo-
genetic group assignment.

Polymorphism patterns are associated with ExPEC 
of different subpathotypes and phylogenetic groups provide 
additional resolution
The OmpA protein sequences identified in our ExPEC 
collection could sometimes predict the phylogenetic 
group assignment (Fig.  3 and Additional file  5: Figure 
S1). When the linker/dimerization domains were exam-
ined for relationship to phylogenetic group assignment, 
distinctions were observed among the subpathotypes 
(Fig.  3a). Phylogenetic groups A and B1 were unani-
mously composed of the ANVG linker/dimerization 
polymorphism pattern. The dimerization pattern for 
phylogenetic group C included an additional unique 

Fig. 1  Structure of OmpA, represented by the black and blue line looping through the outer membrane, with amino acid sequence 
polymorphisms indicated at their approximate positions. Polymorphisms 1–18 are within the N terminal domain region while polymorphisms 
19–22 are within the linker/dimerization domain. The OmpA structure is based on data presented in other work [10, 21]



Page 4 of 7Nielsen et al. BMC Res Notes           (2020) 13:51 

dimerization pattern, ANAG, and this pattern was only 
found in APEC (Fig.  3a). There were also differences in 
the linker/dimerization domains of phylogenetic group 
B2 as NMEC and UPEC contained the unique polymor-
phism pattern VTVA, which was absent from APEC. 
However, the proportion of NMEC and UPEC assigned 
to phylogenetic group B2 is greater than that of APEC 
(Additional file 1: Table S1) as noted previously [25, 27]. 
Phylogenetic group F consisted of ATVA and ATVG. A 
majority of APEC belong to phylogenetic group C [25], so 
it was unsurprising to find APEC had a second polymor-
phism pattern compared to NMEC and UPEC, identified 
by the two linker/dimerization domain patterns ANAG 
and ANVG (Fig. 3a).

When the N-terminal domain pattern was examined, 
differences between the ExPEC subpathotypes were 
evident for some of the phylogenetic groups (Fig.  3b). 
Important subpathotype differences in OmpA polymor-
phisms were found in APEC assigned to phylogenetic 
group A, and these APEC had the “B” pattern for their 
N-terminal domain unlike NMEC and UPEC, but UPEC 
also had a “B” N-terminus pattern unlike APEC and 
NMEC. ExPEC subpathotypes assigned to the B2 and F 
phylogenetic groups also had differences. The UPEC phy-
logenetic group B2 had a greater diversity of polymor-
phism patterns, and APEC had a different N-terminal 
domain pattern in phylogenetic group F compared to 

NMEC and UPEC. This pattern, N-terminal domain pat-
tern “D” was shared with phylogenetic group B2 of APEC 
and NMEC isolates as well as phylogenetic group D iso-
lates of APEC. Therefore, a subset of APEC of different 
chromosomal lineages harbor OmpA proteins, similar to 
those of NMEC and UPEC in the B2 phylogenetic group. 
Alternatively, the phylogenetic classification scheme 
assigning isolates may have insufficient resolution for 
some of the strains surveyed.

The OmpA loops of NMEC have been shown to con-
tribute to neonatal bacterial meningitis [16, 33]. Mit-
tal et  al. [33] found that loops 1 and 3 were necessary 
for survival in macrophages; loops 1 and 2 were neces-
sary for meningitis, and alterations of loop 4 resulted in 
enhanced severity in NMEC’s pathogenesis. Neverthe-
less, this study found no defining loop pattern for NMEC, 
suggesting that an NMEC OmpA-targeting vaccine may 
not be widely efficacious [18]. Like NMEC, the APEC and 
UPEC subpathotypes did not have one defining polymor-
phism pattern for the subpathotype. There were, how-
ever, statistically significant differences between some 
polymorphism patterns and their ExPEC subpathotypes, 
which agrees with the assessment that certain subpatho-
type subsets can be eliminated as zoonotic pathogens 
(Fig.  2) [28]. The lack of any subpathotype-only OmpA 
types also provides further evidence of a zoonotic poten-
tial of these organisms [34–37].

Fig. 2  Polymorphism patterns and prevalence of each pattern for APEC (n = 171), NMEC (n = 80), and UPEC (n = 148) for any polymorphism pattern 
that occurred greater than once. Polymorphism patterns A1, B2, C1, C4, D1, D3, and F2 are statistically significant between the subpathotypes 
(p < 0.05). Any polymorphism pattern that occurred fewer than two times was excluded from analysis
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Although the different ExPEC subpathotypes did 
have significantly different OmpA polymorphism pat-
terns, these patterns were often associated with the 
phylogenetic groups. However, there were differences 
found between avian and human ExPEC for some phy-
logenetic group isolates. APEC belonging to phyloge-
netic group F had an N-terminus pattern unlike NMEC 
and UPEC (Fig.  3). For isolates belonging to phyloge-
netic group C, UPEC had a unique N-terminus pattern, 

and APEC had a unique linker/dimerization domain. 
Although the unique differences observed cannot be 
accounted, they may have potential to confer environ-
mental or pathogenic advantage to strains possessing 
them, warranting further investigation. As the phy-
logenetic groups were unable to sufficiently define all 
OmpA patterns, this study suggests there may be selec-
tive pressures on the protein or that the creation of a 
new phylogenetic group is warranted.

Fig. 3  ExPEC subpathotype polymorphisms differ across their phylogenetic groups (facetted plots) by their linker/dimerization (a) and N-terminal 
domains (b). Any polymorphism pattern that occurred fewer than two times per subpathotype was excluded from analysis



Page 6 of 7Nielsen et al. BMC Res Notes           (2020) 13:51 

In conclusion, this study identified 22 polymorphisms 
and 25 polymorphism patterns among APEC, NMEC, 
and UPEC subpathotypes. APEC, NMEC, and UPEC 
did not have specific conserved OmpA polymorphism 
patterns, but some were found solely within a subpatho-
type and certain OmpA polymorphism patterns were 
associated with certain phylogenetic groups. For NMEC, 
there was no conserved OmpA polymorphism pattern, 
prompting questions regarding OmpA’s role in cross-
ing the blood brain barrier and survival. Further work 
is needed to demonstrate the biological significance of 
OmpA polymorphisms, but this study provides an impor-
tant first step in elucidating the relationships between 
amino acid differences and their respective function.

Limitations
This study is based on analysis of a collection of NMEC, 
APEC and UPEC randomly selected from collections 
described previously. The data can be viewed as being 
slightly biased based on the strain types examined—not 
all of the Clermont phylogenetic groups are represented 
in a subpathotype reflecting the majority of strains caus-
ing disease in a host. The study provides insight into 
OmpA as virulence factor of ExPEC, polymorphism pat-
terns and their association with subpathotypes and phy-
logenetic group classification.
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