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RESEARCH NOTE

High-throughput sequencing 
of virus-infected Cucurbita pepo samples 
revealed the presence of Zucchini shoestring 
virus in Zimbabwe
Charles Karavina1, Jacques Davy Ibaba2*  and Augustine Gubba2

Abstract 

Objectives: Plant-infecting viruses remain a serious challenge towards achieving food security worldwide. Cucurbit 
virus surveys were conducted in Zimbabwe during the 2014 and 2015 growing seasons. Leaf samples displaying 
virus-like symptoms were collected and stored until analysis. Three baby marrow samples were subjected to next-
generation sequencing and the data generated were analysed using genomics technologies. Zucchini shoestring 
virus (ZSSV), a cucurbit-infecting potyvirus previously described in South Africa was one of the viruses identified. The 
genomes of the three ZSSV isolates are described analysed in this note.

Results: The three ZSSV isolates had the same genome size of 10,297 bp excluding the polyA tail with a 43% GC con-
tent. The large open reading frame was found at positions 69 to 10,106 on the genome and encodes a 3345 amino 
acids long polyprotein which had the same cleavage site sequences as those described on the South African isolate 
except for the P1-pro site. Genome sequence comparisons of all the ZSSV isolates showed that the isolates F7-Art and 
S6-Prime had identical sequence across the entire genome while sharing 99.06% and 99.34% polyprotein nucleotide 
and amino acid sequence identities, respectively with the isolate S7-Prime.
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Introduction
Cucurbit is a generic term used to denote all species 
within the Family Cucurbitaceae also know as the gourd 
family [1]. Numerous cucurbit crops are economically 
important worldwide. Cucurbits are consumed in dif-
ferent ways as fruits or vegetables, providing essential 
nutrients and dietary fibre [2]. In Zimbabwe, Some of the 
cultivated cucurbits include the cucumber (Cucumis melo 
L.), the watermelon (Citrullus lanatus (Thunb.) Matsum. 

& Nakai), the melon (Cucumis melo L.), the pumpkin 
(Cucurbita maxima Duch.), the butternut (Cucurbita 
moschata Duch.) and the baby marrow (Cucurbita pepo 
L.). They are widely grown by both commercial and 
smallholder farmers as food and cash crops. Virus dis-
eases on cucurbits produce diverse symptoms that result 
in yield reduction and in severe instances compromised 
fruit quality [3, 4]. The negative effects of plant-infecting 
viruses on crops are more prominent especially in coun-
tries where their studies are underdeveloped.

High-throughput sequencing (HTS), also called next-
generation sequencing (NGS) describes a series of tech-
nologies whereby millions or billions of DNA molecules 
are sequenced simultaneously [5]. The application of 
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these ever-growing sequencing technologies and bioin-
formatics data analysis to the studies of plant-infecting 
viruses, which started in 2009 [5], have revolutionized 
the fields of virus discovery and diagnostics, resulting 
in unprecedented virus discoveries from any host and 
environment [6]. Unlike other popular techniques such 
as the enzyme-linked immunosorbent assay, molecu-
lar hybridization and polymerase chain reaction that 
mainly work on known pathogens, HTS data analysis 
has made possible the identification of sequences of 
known or unknown viruses from any host without any 
prior knowledge of the disease aetiology [7, 8].

Zucchini shoestring virus (ZSSV) was discovered 
among other known cucurbit-infecting viruses in 2015 
in South Africa when the RNA from severely distorted 
Baby marrow leaves were subjected to HTS [9, 10]. 
Genomics and taxonomic studies revealed that ZSSV is 
a new species in the genus Potyvirus [10]. The Interna-
tional Committee TV subsequently ratified these find-
ings [11]. The genus Potyvirus is one of the 8 genera 
that composed the family Potyviridae. Members in that 
family, also known as potyvirids, are differentiated by 
the host range, genomic features and phylogeny, with 
a species demarcation criterion set to a nucleotide and 
amino sequence identity less than 76% and 82%, respec-
tively for the large open reading frame (ORF) or its 
protein product. In instances where the complete ORF 
sequence is not available, similar criteria can be used 
for the coat protein (CP) coding region [12].

Viruses that belong to the genus Potyvirus have 
non-enveloped, flexuous and filamentous virions of 
680–900 nm in length and 11–20 nm in diameter. The 
genome of potyviruses is a positive-sense ssRNA mol-
ecule with its 5′ terminus covalently linked to the viral 
protein genome linked (VPg) and its 3′ end polyade-
nylated. The 10,000 bp genome harbours two ORFs that 
encode eleven multifunctional proteins. A large ORF 
is translated into a single polyprotein that is cleaved at 
semi-conserved sites by three self-encoded proteases 
into ten mature proteins namely the protein 1 protease 
(P1-Pro), the helper component proteinase (HC-Pro), 
Protein 3 (P3), six kilodalton peptide 1 (6K1), the 6K2, 
the cytoplasmic inclusion (CI), the nuclear inclusion 
A protease (NIa-Pro), the nuclear inclusion B RNA-
dependent RNA polymerase (NIb), the VPg and the CP 
[12]. A smaller ORF, named the pretty interesting Poty-
viridae ORF (PIPO), is generated by a polymerase slip-
page mechanism and is expressed as the trans-frame 
protein P3N-PIPO [13–15].

In this note, we described and studied the genome 
sequences of three ZSSV isolates obtained through 
HTS of infected baby marrow leaves collected in 
Zimbabwe.

Main text
Sample sources
Virus surveys were conducted in selected cucurbit farms 
in Harare, Zimbabwe, in 2014 and 2015 growing seasons. 
Baby marrow plants (Cucurbita pepo) displaying mosaic 
and mild leaf distortion (Fig. 1) were the most prevalent 
symptoms of viral aetiology observed throughout the 
surveys. Labelled samples were collected and consisted of 
one symptomatic younger leaf fully developed preserved 
in RNAlater Solution (ThermoFisher Scientific, USA). 
Three leaf samples from three different farms were ran-
domly selected for HTS.

High‑throughput sequencing and data analysis
Total RNA was extracted from each leaf sample using 
the Quick-RNA Miniprep Kit (Zymo Research, USA) as 
per the manufacturer’s instructions and was shipped on 
dry ice to the Agricultural Research Council Biotechnol-
ogy Platform (ARC-BTP) in Pretoria, South Africa for 
sequencing on the HiSeq platform (Illumina Inc., USA). 
For each sample, the data generated from sequencing was 
analysed as follows. The read quality was assessed using 

Fig. 1 Picture of the most common symptom observed on 
baby marrow plants during the survey conducted in selected 
cucurbit-growing farms in Harare in 2014 and 2015
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FastQC version 0.11.5 (Babraham Bioinformatics) and 
when necessary, Trimmomatic version 0.36 [16] was used 
to trim. De novo assembly was then performed using 
SPAdes version 3.10.1 [17] according to the developer’s 
instructions. Nucleotide blast was performed on all con-
tig using BLAST+ [18].

Genomics and phylogenetic analysis
The ORFfinder web version (https ://www.ncbi.nlm.nih.
gov/orffi nder/) was used to identify ORFs. ClustalW [19] 
was used to do multiple sequence alignment. Nucleo-
tide and amino acid sequence identities were performed 
online with SIAS (http://imed.med.ucm.es/Tools /sias.
html). MEGA X software version 10.1.7 [20] was used 
to find the best evolutionary model fitting our phyloge-
netic analysis and to infer the maximum likelihood tree 
accordingly. ZSSV being one of the species in the “Papaya 
ringspot virus (PRSV) cluster” of cucurbit-infecting poty-
viruses, the phylogenetic analyses were performed using 
the CP coding sequences of selected members of this 
cluster.

Results
ZSSV genome sequence identified from HTS data analysis
The BLAST results identified one contig from each sam-
ple as a perfect match to the full-length genome sequence 
of the South African (SA) ZSSV isolate (GenBank acces-
sion number: KU355553.1). These sequences were then 
referred as ZSSS isolates F7-Art, S6-Prime and S7-Prime. 
The coverage values were 30×, 66× and 80× for F7-Art, 
S6-Prime and S7-Prime, respectively. The genome size 
was the same for the three isolates and consisted of 
10,297  bp excluding the polyA tail with GC contents 
varying between 42.92 and 42.96%. Each isolate sequence 
was submitted to GenBank and was given accession 
number as surmised in Table 1.

ZSSV genome analysis and phylogeny
The genome features common to the three isolates 
included the lengths and the positions of both ORFs and 
the polyprotein cleavage site sequences. The large ORF 
was located at positions 69 to 10,106 of the genome. 

The polyprotein resulting from the direct translation 
of the large ORF was 3345 amino acids long. The PIPO 
ORF was situated from nucleotide position 3611 to 3793. 
The LAIGN box that has been reported to play a role in 
virus movement and amplification [21] and the FRNK 
box involved in RNA silencing and symptom develop-
ment [22] were identified on the HC-Pro of all the ZSSV 
isolates. The motifs DAG [23], RITC and PTR involved 
in aphid transmission were also part of the CP and the 
HC-Pro.

The polyprotein cleavage site sequences of the three 
isolates described in this study were the same as the SA 
isolate [10] except for the P1-pro site that was IVHY|S 
instead of IIHY|S. Genome sequence comparisons of all 
the ZSSV isolates are available in Additional files 1 and 2. 
They showed that the isolates F7-Art and S6-Prime had 
identical sequence across the entire genome while shar-
ing 99.06% and 99.34% polyprotein nucleotide and amino 
acid sequence identities, respectively with the isolate 
S7-Prime. The CP, 6K1, 6K2 and 5′ terminus nucleotide 
and amino acid sequences were the same for the three 
isolates under study. The amino acid sequence of the 
HC-Pro and the NIa-Pro were 100% identical although 
their corresponding nucleotide sequences were not. The 
lowest percentage values of 97.78% and 97.21% were 
recorded with the P1-Pro nucleotide and amino acid 
sequence, respectively. When compared with the SA iso-
late, the polyprotein nucleotide sequence identities was 
91.08% with the isolates F7-Art and 92.02 with the isolate 
S7-Prime. The polyprotein amino acid sequence identities 
percentages were a bit higher at 95.84% and 96.5% against 
the isolates F7-Art and the isolate S7-Prime, respec-
tively. At the individual genome features nucleotide and 
amino acid sequence identity between the SA isolate and 
the ZSSV isolates from Zimbabwe ranged from 87.87 to 
96.39% and from 87.1 to 99.34%, respectively.

The phylogenetic analysis involved 33 nucleotide 
sequences and was inferred using the general time-
reversible model with a discrete Gamma distribution (5 
categories (+G, parameter = 0.8565)) and invariable sites 
([+I], 27.21% sites). The tree with superior log-likelihood 
value (− 9554.87) was automatically selected (Fig. 2). The 
selected isolates in the tree were divided into three main 
groups. One group was made of Moroccan watermelon 
mosaic virus (MWMV) isolates, Sudan watermelon 
mosaic virus (SuWMV) isolates, Algerian watermelon 
mosaic virus (AWMV) isolates and ZSSV isolates. In 
another group were included Zucchini tigré mosaic virus 
(ZTMV) isolates and PRSV isolates. The last group com-
prised Wild melon vein banding virus (WMVBV) isolates 
and Zucchini yellow fleck virus (ZYFV) isolates. All the 
ZSSV isolates clustered together with 100% bootstrap 
value.

Table 1 GenBank accession number of  the  ZSSV isolates 
described in this study

Isolate name Genbank 
accession 
number

Zucchini shoestring virus isolate F7-Art MK204479.1

Zucchini shoestring virus isolate S6-Prime MK204480.1

Zucchini shoestring virus isolate S7-Prime MK204481.1

https://www.ncbi.nlm.nih.gov/orffinder/
https://www.ncbi.nlm.nih.gov/orffinder/
http://imed.med.ucm.es/Tools/sias.html
http://imed.med.ucm.es/Tools/sias.html
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Discussion
PRSV cluster of curcurbit-infecting virus include eight 
acknowledged species. Four of those species, ZTMV 
[24], ZSSV [10], SuWMV and WMVBV [25], have been 
reported in the past 7 years. Moreover, MWMV, AWMV, 
ZSSV, SuWMV and WMVBV were identified in Africa, 

suggesting that the PRSV cluster underwent an impor-
tant diversification in Africa [25]. Out of these viruses 
present in Africa, MWMV is the widespread one having 
been reported in all African regions [3, 26–32]. The HTS 
in this study made the detection of ZSSV on infected leaf 
sample possible. The presence of ZSSV in cultivated baby 

Fig. 2 Maximum likelihood tree of selected members of the PRSV cluster of cucurbit-infecting viruses. The bootstrap percentage values are 
shown next to the branches. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. MWMV: Moroccan 
watermelon mosaic virus; SuWMV: Sudan watermelon mosaic virus; AWMV: Algerian watermelon mosaic virus; ZSSV: Zucchini shoestring virus; 
ZTMV: Zucchini tigré mosaic virus; PRSV: Papaya ringspot virus; WMVBV: Wild melon vein banding virus; ZYFV: Zucchini yellow fleck virus
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marrow plants from the surveyed farms may indicate 
either a broader geographical distribution of the virus or 
its spreading across borders. The occurrence of ZZSV in 
Zimbabwe highlights the need to conduct further studies 
on its epidemiology and to develop effective management 
strategies.

Limitations

1. The small number of samples analysed in that study 
was one of the limitations.

2. ZSSV at this stage of the study can not be considered 
the main causal agent of the symptoms identified in 
the virus surveys.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1310 4-020-4927-3.

Additional file 1. Nucleotide sequence identities of the Zucchini 
shoestring virus (ZSSV) isolates. Table displaying the nucleotide sequence 
identities in percentage between all ZSSV isolates available on GenBank.

Additional file 2. Amino acid sequence identities of the Zucchini 
shoestring virus (ZSSV) isolates. Table displaying the amino acid sequence 
identities in percentage between all ZSSV isolates available on GenBank.
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