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Abstract 

Objective:  Combinations of pharmacological agents are essential for disease control and prevention, offering many 
advantages over monotherapies, with one of these being drug synergy. The state-of-the-art method to profile drug 
synergy in preclinical research is by using dose–response matrices in disease-appropriate models, however this 
approach is frequently labour intensive and cost-ineffective, particularly when performed in a medium- to high-
throughput fashion. Thus, in this study, we set out to optimise a parameter of this methodology, determining the 
minimal matrix size that can be used to robustly detect and quantify synergy between two drugs.

Results:  We used a drug matrix reduction workflow that allowed the identification of a minimal drug matrix capable 
of robustly detecting and quantifying drug synergy. These minimal matrices utilise substantially less reagents and 
data processing power than their typically used larger counterparts. Focusing on the antileukemic efficacy of the 
chemotherapy combination of cytarabine and inhibitors of ribonucleotide reductase, we could show that detection 
and quantification of drug synergy by three common synergy models was well-tolerated despite reducing matrix size 
from 8 × 8 to 4 × 4. Overall, the optimisation of drug synergy scoring as presented here could inform future medium- 
to high-throughput drug synergy screening strategies in pre-clinical research.

Keywords:  Cancer, Combination therapy, Precision medicine, Synergy, Antagonism, Dose–response matrix, Dose–
response landscape, Checkerboard assay
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Introduction
Current treatment regimens for many different diseases 
utilise combinations of pharmacological agents, and this 
is especially true in the treatment of cancer. The rationale 
behind the use of two or more drugs in cancer therapy 
is to enhance cancer cell killing, reduce treatment toxic-
ity, and prevent the onset of treatment resistance. There 
is ample clinical evidence documenting the benefit of 
this approach for cancer patients [1], with one of the first 
being in acute leukaemias [2]. As oncology continues to 
move towards personalised treatment strategies, be it 
with traditional cytotoxic chemotherapies or with tar-
geted therapies, ultimately these agents will be used in a 

combination regimen, and it is important to ensure these 
combinations are developed in a rational manner [3]. It is 
thus critical to robustly assess drug-drug interactions at 
the pre-clinical stage and to translate this knowledge into 
the clinic.

One parameter of combination therapy that is routinely 
the focus of pre-clinical research is drug synergy/antag-
onism scoring [4]. Although there is a lack of nomen-
clature standardisation [5, 6], synergy can be broadly 
defined as a combination effect that is stronger than 
expected from the sum of the drugs individual effects, 
whilst antagonism is a combination effect that is less 
active than the additive effect. Although drug synergy is 
not necessarily required for clinical benefit [7], with an 
additive effect being sufficient to cure in some instances 
[8], synergy/antagonism scoring remains an impor-
tant parameter to evaluate when designing combination 
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therapies or working to understand the mechanisms 
underpinning current treatment regimens.

The most straight-forward and cost-effective setting 
in which to assess drug-drug interactions is in cultured 
cancer cell lines, and the information generated here 
can be translated into more complex cancer models. 
There are a number of methodologies to assess drug-
drug interactions in cancer cell lines, ranging from those 
requiring minimal effort but yielding little information, 
to those which can be more labour intensive but gener-
ate a comprehensive profile of drug-drug interaction [4, 
5, 9]. These methods range from (i) testing of single drug 
doses alone and in combination, (ii) the use of dose gra-
dients in which drug combinations are tested at a single 
fixed ratio, and (iii), the use of dose–response matrices 
(also referred to as a checkerboard assay) which provide 
complete dose–response information for the tested com-
bination. The latter approach provides the most com-
prehensive profile of drug-drug interaction, but requires 
more datapoints, and thus reagents, to achieve this, 
which can limit throughput potential. Thus, in this study, 
we set out to optimise drug synergy scoring using dose–
response matrices by questioning at which point reduc-
ing the matrix size would compromise on robust drug 
synergy scoring.

Main text
Materials and methods
Cell lines
The THP-1 cell line used in this study is a CRISPR/
Cas-9 control clone, the generation of which has been 
described previously [10]. Cells were cultured in IMDM 
medium (#12440053, Gibco), supplemented with 10% 
FCS (#10500064, Gibco) and penicillin–streptomycin 
(#15070063, Gibco) at 37  °C and 5% CO2 in a humidi-
fied incubator. Cells were routinely monitored and tested 
negative for mycoplasma using MycoAlert (#LT07-318, 
Lonza).

Compounds
Ara-C (#C1768, Sigma-Aldrich) and dF-dC (#G6423, 
Sigma-Aldrich) were prepared at 10  mM stock concen-
tration in DMSO (#23486, VWR Chemicals) and stored 
at − 20  °C. HU (#H8627, Sigma-Aldrich) was prepared 
fresh at 50 mM stock concentration in DMSO.

Drug combination assay
The proliferation inhibition and drug synergy assay has 
been described previously [11]. Compound dispensing in 
flat, clear-bottomed 384-well microplates (#3764, Corn-
ing) and DMSO volume normalisation was performed 
using the D300e Digital Dispenser (Tecan) with the aid 
of the Synergy Wizard in the D300e Control Software. 

Plate layouts included two columns of DMSO to be used 
as positive (cells suspension supplemented with DMSO) 
and negative controls (media only with DMSO). Cell 
suspensions (20,000 cells/ml) were dispensed into these 
plates using a MultiDrop (Thermo Fisher Scientific), dis-
pensing 50  μl per well (thus 1000 cells per well). Plates 
were then placed in a pre-warmed humidity chamber 
consisting of a plastic box containing damp paper towels 
and incubated for 4 days at 37 °C and 5% CO2 in a con-
ventional humidified incubator. To quantify remaining 
viable cells, 10  μl resazurin solution (#R17017, Sigma-
Aldrich; prepared to 0.06  mg/ml in PBS) was added to 
each well and further incubated for 6 h prior to fluores-
cence measurements (530/590 nm, ex/em) using a Hidex 
Sense Microplate Reader. Fluorescent intensity of each 
well was normalised to the average of the control wells 
on the same plate to calculate relative cell viability values. 
For synergy analysis, relative cell viability measurements 
from duplicate wells were averaged and analysed using 
the web-based tool SynergyFinder [12, 13]. Synergy sum-
mary scores were derived from the average of the synergy 
scores across the entire dose–response landscape. Data 
visualisation and statistical testing was performed using 
Prism 8 (GraphPad Software).

Results
Reducing the size of a drug matrix vastly reduces the 
wells used in a microwell plate (Table 1), but it remains 
unclear which matrix size can robustly detect and quan-
tify drug synergy. As an example of a synergistic interac-
tion between two anti-cancer drugs by which to address 
this question, we chose the deoxycytidine analogue cyta-
rabine (ara-C) and the ribonucleotide reductase (RNR) 
inhibitors hydroxyurea (HU) or gemcitabine (dF-dC), 
the latter of which is also a deoxycytidine analogue. Syn-
ergistic killing of cancer cells by this drug combination 
has been documented for decades (reviewed in [11]), 
and thus, we utilised this example in the following study 

Table 1  Comparison of matrix sizes

a  Typical experimental setup includes one column (or equivalent) each of 
positive and negative controls, and thus this is accounted for in the matrices per 
plate calculation

384-wp 384-well microplate

Matrix Wells used in a 384-wp Matrices 
per 384-wp (incl. 
controlsa)

8 × 8 64 5

6 × 6 36 9

5 × 5 25 14

4 × 4 16 22
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to investigate which size dose–response matrix can still 
robustly detect and quantify this drug-drug interaction.

In this workflow, outlined in Fig. 1, we began by deter-
mining the concentration range required to produce a 
complete dose–response curve for each drug in each cell 
line by performing monotherapy dose–response analy-
ses. Having a complete monotherapy dose–response is 
ideal for comprehensively profiling drug-drug interaction 
when compounds are then evaluated in combination. 
However, in some instances this may not be possible due 
to the activity range of the compound or compound solu-
bility, which may limit the maximum concentration that 
can be tested. After selecting the concentration ranges to 
be evaluated, we then designed an experiment in which 
several drug matrix sizes were tested on the same micr-
otiter plate in duplicate. Matrix sizes began at 8 × 8 and 
was reduced to 6 × 6, 5 × 5, and 4 × 4, each having the 
same highest and lowest compound concentration with 
doses between equally, logarithmically spaced. Each 
matrix included a dose–response of each drug alone, 

together with no compound (i.e. solvent only), thus an 
8 × 8 matrix includes 7 doses each tested in combination 
(49 combinations in total) whilst a 4 × 4 includes 3 doses 
each tested in combination (9 combinations in total). The 
acute myeloid leukaemia (AML) cell line, THP-1, was 
then seeded upon these differing dose–response matrices 
and, following a 4-day incubation, resazurin reduction 
used to measure the remaining metabolically viable cells. 
Relative cell viabilities were then calculated and analysed 
via the SynergyFinder web-application [12, 13] using 3 
alternate drug-drug interaction models, zero interaction 
potency (ZIP) [14], bliss independence [15], and highest 
single agent (HSA) [16]. This experiment was repeated 
four times on different days and the data subsequently 
combined, shown in Fig. 2.

We first plotted relative cell viability as a function 
of ara-C concentration with increasing RNRi dosage 
(Fig. 2a). Regardless of matrix size, the dose-dependent 
sensitisation of THP-1 cells to ara-C by either HU or 
dF-dC could be clearly observed. However, although 
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Fig. 1  Overview of experiment to evaluate minimal dose–response matrices. Chemotherapeutics cytarabine (ara-C) and ribonucleotide reductase 
inhibitors (RNRi) hydroxyurea (HU) or gemcitabine (dF-dC) are first evaluated in monotherapy dose–response curve (DRC) analyses before being 
combined in different dose–response (DR) matrix sizes. Following incubation with cells, response to drug treatment is assessed before DR analysis 
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the ara-C sensitisation was visible in all matrix sizes, 
the resolution of the dose–response data was obviously 
reduced in the smaller matrices. We next compared the 
synergy summary scores from the different matrix sizes 
(Fig.  2b). We observed that all matrices tested could 
detect a synergistic interaction between ara-C and HU 
or dF-dC in THP-1 cells. Comparing the synergy values 
within each synergy model using the non-parametric 

Kruskal–Wallis test, we found that the vast majority 
of matrix sizes showed no significant difference in the 
quantity of synergy measured. Altogether, 36 compari-
sons were made and only 1 gave a statistically signifi-
cant difference, which was the 8 × 8 matrix compared 
with the 4 × 4 using the HSA model (p = 0.025), but this 
significant difference was not observed using the alter-
nate synergy models.
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Fig. 2  Dose–response curves and synergy scores produced from the different matrix sizes. a Relative cell viability plotted as a function of ara-C 
concentration at differing hydroxyurea (HU) or gemcitabine (dF-dC) doses. Mean values from four independent experiments plotted, error bars 
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ns not significant; *, p < 0.05
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Discussion
In this study, we set out to scale down the size of dose–
response matrices used to assess drug synergy, as 
although this method produces the most comprehensive 
dataset, it is often cost-prohibitive. Comparison of 8 × 8, 
6 × 6, 5 × 5, and 4 × 4 matrices revealed no consistent dif-
ference in detecting and quantifying synergy between two 
chemotherapeutic agents. Thus, the minimal 4 × 4 and 
5 × 5 matrices were capable of quantifying drug synergy 
to an extent equal to the larger matrices, despite requir-
ing substantially less wells in a microtiter plate (Table 1). 
Accordingly, this would reduce the running cost of this 
approach considerably, and allow more combinations or 
cell models to be screened on the same microtiter plate, 
which could be an important consideration for medium- 
to high-throughput drug combination screens.

In support of the utility of minimal drug matrices, we 
recently used this approach in testing drug combina-
tions in a panel of AML cell lines to identify a biomarker 
for drug synergy, which we confirmed in ex vivo experi-
ments in patient-derived AML blasts [11]. Furthermore, 
a pseudo-5 × 5 matrix (monotherapy dose-responses 
performed separately to a 4 × 4 combination matrix) has 
been successfully deployed in a large-scale drug com-
bination screen in cancer cell lines [17], and the NCI-
ALMANAC study also contains 4 × 4 drug matrices [18, 
19].

Several alternate approaches have been suggested with 
the aim to reduce the cost of high-throughput drug com-
bination screening, such as using a cross-combination 
design [20] or utilising a sub-matrix design coupled with 
machine learning, which is readily accessible through a 
web-based application [21]. The approach suggested in 
this study is not mutually exclusive with those previously 
reported, and perhaps future studies could evaluate the 
use of the cross-combination or sub-matrix design based 
upon a minimal dose–response matrix to potentially fur-
ther increase throughput of drug combination screens.

Limitations
A principle limitation of this study is that it utilises only 
three chemotherapeutics combined into two combina-
tions which are tested in one cancer cell model, by which 
to optimise the methodology, and of course, there are 
infinitely more pharmaceutical agents and combinations 
that can be assessed. Thus, it is possible that conclu-
sions made here may not be translated to other combi-
nations or preclinical cancer models; this remains to 
be tested. However, the workflow outlined in this study 
could be first utilised with the drug combinations and/
or disease models of interest in order to inform further 
experiments.

Regarding the minimal matrices, whilst the 4 × 4 
matrix could robustly detect and quantify synergy to 
the same extent as larger matrices, resolution of dose–
response information was reduced, which could be an 
important consideration when setting up a drug com-
bination experiment. This is especially true given that 
some synergy metrics (such as ZIP [14]) requires accu-
rate curve fitting to the datapoints (although this was 
not a limitation in the 4 × 4 matrices shown in this 
study). Furthermore, the approach of using a minimal 
matrix requires pre-screening of each compound as a 
monotherapy in order to determine the concentration 
range to be tested in the dose–response matrix, which 
may not always be possible depending upon the drug 
combination screening setup. Another consideration 
is that this method utilises automation and liquid han-
dling equipment to increase technical accuracy and this 
equipment may not be readily available due to cost, 
however the technical robustness provided by an auto-
mated setup is a significant advantage. Given the reduc-
tion of dose–response resolution by the minimal 4 × 4 
matrix, a compromise could be to run drug combina-
tion screens with a 5 × 5 matrix, as this provides a good 
balance between (i) reagents consumed, (ii) robust 
detection and quantification of synergy, and (iii), dose–
response resolution.
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