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Adults with Prader–Willi syndrome exhibit 
a unique microbiota profile
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Abstract 

Objective:  Adults with Prader–Willi syndrome (PWS) require less energy intake to maintain body weight than the 
general adult population. This, combined with their altered gastrointestinal transit time, may impact microbiota com-
position. The aim of the study was to determine if the fecal microbiota composition of adults with PWS differed from 
non-affected adults. Using usual diet/non-interventional samples, fecal microbiota composition was analyzed using 
16S rRNA gene amplicon sequencing and data from adults with PWS were merged with four other adult cohorts that 
differed by geographical location and age. QIIME 2™ sample-classifier, machine learning algorithms were used to 
cross-train the samples and predict from which dataset the taxonomic profiles belong. Taxa that most distinguished 
between all datasets were extracted and a visual inspection of the R library PiratePlots was performed to select the 
taxa that differed in abundance specific to PWS.

Results:  Fecal microbiota composition of adults with PWS showed low Blautia and enhanced RF39 (phyla Teneri-
cutes), Ruminococcaceae, Alistipes, Erysipelotrichacaea, Parabacteriodes and Odoribacter. Higher abundance of 
Tenericutes, in particular, may be a signature characteristic of the PWS microbiota although its relationship, if any, to 
metabolic health is not yet known.
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Introduction
Prader–Willi syndrome (PWS) is a genetic disorder char-
acterized by lower energy requirement, lack of satiety, 
and hyperphagia, which together lead to obesity if food 
intake is not strictly controlled [1]. Although reported 
total fiber intake of adults with PWS [2, 3] is similar to the 
general population [4], constipation is common in this 
patient population [5]. Microbiota composition may be 
altered by constipation; the evidence suggests decreased 
Bifidobacterium [6, 7], Lactobacillus [7] and Bacteroides 
[6] compared to healthy controls. Further, individuals 
with constipation-predominant irritable bowel syndrome 
(IBS) are also reported to have lower Bifidobacterium and 
Lactobacillus spp., as well as lower Roseburia–E. rectale 

taxa and higher sulfate-reducers [8]. However, in women, 
fecal microbiota profile was not associated with consti-
pation, but to colonic transit time [9]. Adults with PWS 
display delayed mean intestinal transit time compared to 
healthy controls [5], suggesting motility issues which may 
impact microbiota profile.

In adults with PWS, the microbiota composition has 
been shown to differ from controls matched for age, 
gender, and body fat mass index. Specifically, those with 
PWS had a higher abundance of Akkermansia, Desulfo-
vibrio and taxa of Tenericutes and Archaea, but a lower 
abundance of Dorea [10]. However, the microbiota com-
position of these subjects with PWS did not differ sig-
nificantly from that of their parents. It remains unclear 
as to whether the microbiota composition of individuals 
with PWS is characteristic of the syndrome or the envi-
ronment. Given the interconnections between micro-
biota, its metabolism and metabolic health, insight into 
the microbiota profile of PWS, considered a model of 
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hyperphagia [11], is of interest. The aim of this explora-
tory analysis was to determine if the microbiota composi-
tion of adults with PWS differed from unaffected adults, 
independent of geographical location and age.

Main text
Methods
De-identified 16S profiles from usual diet/non-inter-
ventional fecal samples of 25 adults (34.9 ± 10.2  years; 
60% female) with genetically confirmed PWS and resid-
ing in Florida [3, 12] were compared to those of healthy 
adults residing in Canada (n = 151; 35.2 ± 10.1 years; 61% 
female) [13], adults with IBS residing in Canada (n = 263; 
41.8 ± 15.2; 79% female) [14], healthy young adults resid-
ing in Florida, USA (n = 68; 23.2 ± 3.5; 63% female) [15], 
and healthy older women residing in Florida (n = 26; 
73.7 ± 5.6  years) [16]. All source data originated from 
the same lab environment and were subsequently treated 
with the same bioinformatics processing. Details of DNA 
extraction [3, 16] and methods for community-wide tax-
onomic profiling via 16S amplicon sequencing of the fecal 
samples, carried out in the source studies, were previ-
ously reported [3], i.e. no DNA extraction or sequencing 
was conducted for the purposes of the present analysis. 
The Institutional Review Board of the University of Flor-
ida approved this analysis of de-identified 16S profiles as 
exempt. The data in fastq format were imported into one 
QIIME artefact (demux.qza) [17]. All reads were qual-
ity filtered with same parameters and trimmed at 240 bp 
on the forward read. Using the Deblur denoiser (imple-
mented as a QIIME 2 module), the amplicon sequence 

variant (ASV) abundance tables and representative 
sequences were generated. The representative sequences 
were merged to make the taxonomic profiles using the 
‘taxonomy.qza’ trained on the GreenGenes database. The 
ASVs from the abundance table were attributed to known 
taxonomic names and compiled at the genus level for fur-
ther analyses.

Using QIIME’s visualization tools, the principal coordi-
nates analysis (PCoA), weighted UniFrac, and individual 
taxonomic profiles were generated and examined [17–
36]. Group differences were highlighted using QIIME 2 
sample-classifier. This module allowed machine learning 
algorithms to cross-train on the samples and predict the 
label (here the label is ‘from which dataset does the taxo-
nomic profile comes from’). The important features used 
by the algorithm (those taxa that distinguish the most 
between dataset) were extracted and the taxa list was 
used for further exploration. Each important feature was 
plotted using the R library PiratePlot (R version 3.5.3). 
Since this taxa list was not made to single out PWS, but 
rather distinguish between all datasets, a visual inspec-
tion of the plots was performed to select the taxa that dif-
fered in abundance specific to PWS. Eight PWS-specific 
taxa appeared in the top 36 important features.

Results
The Weighted UniFrac PCoA from QIIME of the merged 
datasets was visualized using Emperor and color coded 
according to the sample’s clinical trial provenance and 
is shown in Fig.  1. Each data point represents a fecal 
sample and the distance matrix between them based on 

Fig. 1  Beta diversity by Weighted UniFrac Principal Coordinates Analysis (PCoA) of the fecal microbiome data sets of adults with Prader–Willi 
syndrome (PWS) and (A) adults residing in Canada; (B) adults with irritable bowel syndrome residing in Canada, (C) adults residing in Florida, USA, 
(D) older women residing in Florida
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ASV counts and phylogeny. The PWS samples seem to 
cluster (upper right portion) and the other samples all 
show significant overlap indicates that the PWS profiles 
are different from those of the other adults. Conversely, 
PWS profiles have similarities not shared by the other 
groups. On this basis, a machine learning algorithm was 
implemented to classify the profiles on sample origin 
and highlight the most explicative taxa. Figure  2 shows 
the Machine Learning model—accuracy results for the 
Extra-Tree classification trained on the merged dataset 
samples taken at baseline. The confusion matrix shows 
strong accuracy scores on the main diagonal and a good 
overall accuracy result of 74.8% and an accuracy of 100% 
for the PWS predictions alone. The training was done 
on an 80–20% training-to-testing cross validation ratio. 
QIIME’s sample classifier module heatmap visualization 
is shown in Fig.  2, depicting the relative abundances of 
the important taxa used for the classification for each of 
the groups compared.

The list of important taxa (and associated importance 
score) was obtained from the ‘feature_importance.qza’ 
file generated by the classifier and used for individual taxa 
plotted in Additional file 1: Fig. S1. Note that the model 

optimized for overall performance and thus, many of the 
36 important features taxa shown are used by the model 
to distinguish between non-PWS samples. The selection 
of PWS explaining taxa by manual visualization (taxa 
graphs where the PWS is obviously different from all the 
others) suggests 8 taxa of the 36 important features are 
linked with PWS microbiota profiles (Fig. 3). From the 8 
PWS-specific taxa, only the genus Blautia (ranked 1) was 
lower in PWS than other cohorts. This is of interest given 
Blautia was the most abundant genus in all datasets, 
averaging 21% of the total sample composition. Rumino-
coccaceae appeared twice (rank 8 and 12) at different tax-
onomic levels. The genus Alistipes (family Rikenellaceae, 
phylum Bacteroidetes) ranked 9 and is clearly higher in 
PWS and nearly absent in some others. Erysipelotricha-
caea, Parabacteroides (family Porphyromonadaceae) 
and Odoribacter, ranked 17, 18 and 33, respectively, also 
appeared higher in the PWS dataset. Finally, rank 15 was 
the order RF39 (phylum Tenericutes, class Mollicutes) 
and it seems to be strongly linked with PWS, as the maxi-
mum values of relative abundances for this taxon in sam-
ples of non-affected adult cohorts are much lower than 
those of PWS. Of note, rank 3 (Additional file 1: Fig. S1) 

Fig. 2  Receiver Operating Characteristic (ROC) curves measuring the performance of the Machine Learning classification model at all classification 
thresholds of 1 average scores and 2 per-class. Model optimization curves are the true positive rates over the range of false positive rates. 3 Model 
accuracy and 4 overall and baseline accuracy for the Extra-Tree classification of the merged dataset samples for adults with Prader–Willi syndrome 
(PWS) and adult cohorts (A) residing in Canada, (B) with irritable bowel syndrome residing in Canada, (C) residing in Florida, USA, and (D) older 
women residing in Florida. 5 Heatmap visualization depicting the relative abundances from fecal samples of the important taxa used for the 
classification of adults with Prader–Willi syndrome versus non-affected adult groups
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suggests Bifidobacterium abundance of the PWS profiles 
were similar to the older women but lower than the other 
adult cohorts.

Discussion
Previous research suggests that adults with PWS may 
harbor a microbiota composition with unique charac-
teristics [10]. In the present study, the abundance of 
Bifidobacterium was lower in PWS, with the exception 
of the older women who exhibited similarly low levels. 
This finding was not unexpected given that suppres-
sion of Bifidobacterium has been reported in individuals 
with constipation [7] and some of the adults with PWS 
reported slow transit stool form, suggestive of consti-
pation [3]. This finding is concerning though given the 
protective role of Bifidobacterium spp. in maintain-
ing intestinal eubiosis and barrier function [37]. PWS 
adults exhibited higher abundance of Tenericutes (order 
RF39), Alistipes, Parabacteroides, and Odoribacter, as 
well as Ruminococcaceae and Erysipelotrichaceae, com-
pared to the non-affected adults. Of interest, RF39 was 
one of the taxa identified by Olssen et al. in PWS adults 
[10] and by Peng et al. in children with PWS compared 
to matched controls [38]. The relevance of higher lev-
els of Tenericutes in PWS adults is not known; how-
ever, the abundance of Alistipes and Parabacteroides 

have been negatively associated with cardiometabolic 
indices such as serum lipids, blood glucose, and blood 
pressure [39]. Additionally, Ruminococcaceae has been 
negatively associated with metabolic syndrome [40] and 
lower long-term weight gain [41]. Conversely, abundance 
of Erysipelotrichaceae has been associated with obesity 
and lipid metabolism, and specific taxa within this fam-
ily may be inflammatory and immunogenic [42]. Both 
Odoribacter and Alistipes have been associated with diet 
quality [43]. Olsson et al. showed that adults with PWS 
had lower abundance of Dorea compared to obese con-
trols [10]. Similarly, Peng et al., by random forest analy-
ses, also identified a difference in Dorea in children with 
PWS when compared to controls [38]. Dorea was not an 
identifying taxon for PWS in the present study. However, 
the adults with PWS profiled in this analysis had much 
lower body mass index (BMI) [3] than the subjects in the 
Olsson study. Lower abundance of Blautia in adults with 
PWS presents as an interesting enigma. Three genera in 
the Lachnospiraceae family have been shown to be posi-
tively correlated with BMI, namely Blautia, Dorea, and 
Ruminococcus [44]. Blautia abundance has been shown 
to be inversely associated with visceral fat area—after 
adjustment for age, BMI, and other lifestyle-related fac-
tors [45]. Adults with PWS present with lower visceral fat 
area compared to healthy adults [46], which is thought to 

Fig. 3  PiratePlots of the relative abundances of 8 taxa, specifically 1 genus Blautia, 2 family Ruminococcaceae, 3 genus Alistipes 4 genus 
Ruminococcus, 5 order RF39 6 family Erysipelotrichaceae 7 genus Parabacteroides, and 8 genus Oridobacter, which by manual, visual inspection, 
represent apparent differences between the Prader–Willi syndrome (PWS) microbiota profiles compared to adults (A) residing in Canada, (B) adults 
with irritable bowel syndrome residing in Canada, (C) adults residing in Florida, USA, and (D) older women residing in Florida
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contribute to their reduced risk of developing type 2 dia-
betes [47]. Thus, given their weight status and typically 
lower visceral fat, it might be expected that individuals 
with PWS would have higher abundance of Blautia. Of 
note, Blautia abundance also has been correlated with 
higher serum insulin and impaired lipid metabolism [48], 
suggesting a benefit for low abundance. The finding of 
lower levels of Blautia in adults with PWS may, therefore, 
correlate with their relative insulin sensitivity despite 
frequent obesity. In summary, the microbiota profile 
findings may suggest benefit related to the reported car-
diometabolic protection in PWS [47].

Blautia spp. utilize dietary carbohydrates [49], thus 
the restricted carbohydrate intake of the PWS adults 
[3] may have contributed to lower Blautia abundance. 
Lower abundance of Blautia has been shown in athletes 
consuming a higher protein, lower carbohydrate diet, 
compared to sedentary controls [50]. Although the abso-
lute intake of protein, fat and carbohydrate of the adults 
with PWS is a fraction of the intake of athletes, the per-
centage of energy from protein was similar [3], and thus 
macronutrient composition may contribute to Blautia 
abundance. However, no association between protein, 
fat, carbohydrate or fiber intake with Blautia abundance 
was found in a large cross-sectional study [45]. Of further 
interest is the relationship between Blautia abundance 
and gastrointestinal symptoms. IBS patients, whose gas-
trointestinal symptoms decreased with a low-FODMAP 
diet, had higher abundance of Blautia [51], suggesting 
visceral sensitivity in these individuals. In contrast, indi-
viduals with PWS exhibit a high tolerance to pain and 
discomfort [52]. The adults with PWS who provided 
fecal samples for this analysis reported minimal gastro-
intestinal discomfort [3], similar to healthy individuals 
[15, 53]. The possibility of a relationship between Blau-
tia abundance and visceral sensitivity requires further 
investigation.

The results of this analysis provide further evidence 
that the microbiota composition of individuals with PWS 
differs from that of unaffected individuals, notably with 
the presence of higher Tenericutes, specifically the order 
RF39, although the implications to health are unknown. 
Further, it may be interesting to explore the relationship 
between Blautia abundance and visceral sensitivity, as 
well as metabolic health, in PWS and other patient popu-
lations. Given their low prevalence of Bifidobacterium 
spp., the PWS population may benefit from synbiotic 
supplementation.

Limitations
This study had limitations. Foremost, the study was 
undertaken as a post hoc analysis. Its major limita-
tion was the use of a merged dataset to undertake the 

comparison of PWS to non-affected adults, as the fecal 
samples were not processed in the same batch. How-
ever, all samples were all processed using exactly the 
same methodology in terms of collection, storage, 
sequencing, and bioinformatics. A single database, 
Greengenes, was used; results may differ if data was 
analyzed using another database such as SILVA.
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