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Abstract 

Objective:  The use of genome sequences from strains authenticated to correct species level is a prerequisite for 
confidently exploring the evolutionary relationship among related species. Aspergillus strains erroneously curated as 
Aspergillus oryzae and Aspergillus fumigatus have been noticed in the National Center for Biotechnology Information 
(NCBI) genome database. Aspergillus parasiticus is one of several aspergilli that produce aflatoxin, the most potent 
carcinogenic mycotoxin known up to now. To ensure that valid conclusions are drawn by researchers from their 
genomics-related studies, molecular analyses were carried out to authenticate identities of A. parasiticus strains in the 
NCBI genome database.

Results:  Two of the nine supposedly A. parasiticus strains, E1365 and NRRL2999, were found to be misidentified. They 
turned out to be Aspergillus flavus based on genome-wide single nucleotide polymorphisms (SNPs) and genetic fea‑
tures associated with production of aflatoxin and cyclopiazonic acid. NRRL2999 lacked the additional partial aflatoxin 
gene cluster known to be present in its equivalent strain, designated as SU-1, and shared a very low total SNPs count 
specifically with A. flavus NRRL3357 but not with other A. flavus isolates. Therefore, the mislabeled NRRL2999 strain 
actually is a clonal strain of A. flavus NRRL3357, whose genome was first sequenced in 2005.
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Introduction
Aspergillus parasiticus is a saprophytic fungus found 
in soil and decayed plant materials. It was first isolated, 
from dead mealy bugs in Hawaiian sugarcane, and char-
acterized by Speare in 1912 [1]. A. parasiticus was origi-
nally classified as a subspecies of Aspergillus flavus, 
because of its morphological resemblance to A. flavus. 
Nonetheless, A. parasiticus can be distinguished from 
A. flavus based on other characteristics, such as darker 

green conidial heads and more rough conidium surface 
ornamentation [2].

Aflatoxin B1 is the most carcinogenic mycotoxin known 
[3]. Nearly all A. parasiticus isolates are highly aflatoxi-
genic but abilities of A. flavus isolates to produce afla-
toxin vary greatly. Evidence of the aflatoxin biosynthesis 
gene cluster, as well as its complete characterization, were 
revealed in A. parasiticus [4]. Every known contributing 
enzyme to date and the majority of biosynthesis genes 
were first characterized in A. parasiticus [5]. Since the 
early 2000s, A. flavus has gradually replaced A. parasiti-
cus in studies dealing with population and genetic diver-
sity, pathogen-host interactions, and biological control; 
however, A. parasiticus remains an important research 
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subject because of its potential to co-infect crops such as 
corn and peanuts.

Rapid advancements in massive parallel sequencing in 
the genomic era have accelerated resolution of genome 
information. Genome sequences of over 100 A. flavus 
isolates and nine A. parasiticus strains have been made 
publicly available from NCBI (https://​www.​ncbi.​nlm.​nih.​
gov/​genome). These genome assemblies, along with those 
from closely related aspergilli such as A. oryzae and A. 
sojae, are invaluable resources for comparative genomics 
studies involving the investigation of chromosomal struc-
ture, evolutionary relationship, and genetic variations in 
relation to aflatoxin-producing capabilities of aspergilli 
[6–8].

In the course of analyzing genome sequences depos-
ited in the NCBI genome database, discrepancies were 
revealed for identities of some of the strains designated 
as A. parasiticus, necessitating a closer examination to 
(1) uncover the misidentified strains, (2) reveal their 
correct species identities, and (3) notify NCBI so that 

researchers would not risk erroneous conclusions from 
genomics studies involving these misidentified strains.

Main text
Materials and methods
Determination of genome‑wide single nucleotide 
polymorphisms
Genome sequences of A. parasiticus and A. flavus were 
retrieved from the NCBI genome database (https://​
www.​ncbi.​nlm.​nih.​gov/​genome). Table  1 lists A. para-
siticus and A. flavus strains along with their genome 
information used in the study. The program progres-
siveMauve of Mauve (http://​darli​nglab.​org/​mauve/​
mauve.​html), a system for multiple genome alignments 
[9], was used to obtain genome-wide single nucleo-
tide polymorphisms (SNPs) from analyzed strains, 
here named total SNPs. Aligning all paired genome 
sequences to extract total SNPs was performed using a 
custom JavaScript.

Table 1  Aspergillus strains and genome sequences used in this study

a   Designation “E” indicates its Ethiopian origin. SU-1 was independently sequenced by John Linz’s group at Michigan State University (MSU) and a collaborative group 
of researchers from USDA-ARS and J. Craig Venter Institute (JCVI)
b  AF12, AF70, and AZS04M2A are S-morphotype A. flavus isolates that produce small sclerotia. Other isolates are L-morphotype A. flavus
c  Designations represent eight (I to VIII) chromosomes
d  I and II indicate type I and type II deletions, which are independent events, in the norB-cypA region of the aflatoxin gene cluster [10, 11]. Type I deletion is found 
in aflatoxigenic S-morphotype A. flavus while type II deletion is found in aflatoxigenic L-morphotype A. flavus. S- and L-morphotype strains produce large and small 
sclerotia, respectively
e  AF aflatoxin, CPA cyclopiazonic acid. Presence of complete respective gene clusters: Y yes and N no

A. parasiticusa Size (Mb) WGS norB-cypA regiond AF/CPA clusterse

68–5 30.14 LOAP01 Intact Y/N

CBS117618 38.39 SWCZ01 Intact Y/N

E1348 39.35 SJFE01 Intact Y/N

E1365 37.77 SJFF01 II Y/Y

E1337 39.15 SJFC01 Intact Y/N

E1443 41.45 SJFK01 Intact Y/N

E1319 38.94 SJFB01 Intact Y/N

NRRL2999 37.05 CP051027.1–CP051034.1c II Y/Y

SU-1 (JCVI) 39.47 JZEE01 Intact Y/N

SU-1 (MSU) 40.06 JMUG01 Intact Y/N

A. flavusb

AF12 38.03 NLCN01 I Y/Y

AF70 38.05 NLCM01 I Y/Y

AZS04M2A 38.27 NLCL01 I Y/Y

CA14 37.70 QQZZ01 II Y/Y

CS0504 36.98 NLCK01 II Y/Y

CS0540 36.94 NLCJ01 II Y/Y

CS1137 37.42 NLCI01 II Y/Y

NRRL3357 36.89 AAIH02 II Y/Y

NRRL3357 37.75 CP044616.1–CP044623.1c II Y/Y

WRRL1519 38.04 NPKL01 II Y/Y

https://www.ncbi.nlm.nih.gov/genome
https://www.ncbi.nlm.nih.gov/genome
https://www.ncbi.nlm.nih.gov/genome
https://www.ncbi.nlm.nih.gov/genome
http://darlinglab.org/mauve/mauve.html
http://darlinglab.org/mauve/mauve.html
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Differentiation of A. parasiticus and A. flavus based 
on unique genetic features
Analyses of genetic features of genome sequences were 
performed via CoGe (Comparative Genomics, https://​
genom​evolu​tion.​org/​coge/), an online platform for 
retrieval and comparison of genomic information. For 
the determination of the norB-cypA deletion patterns in 
the aflatoxin gene cluster [10, 11], sequences correspond-
ing to that region from A. parasiticus SU-1, and A. flavus 
NRRL3357 (L-morphotype) and AF12 (S-morphotype) 
were used as alignment templates for Aspergillus genome 
sequences. For the determination of aflatoxin and cyclo-
piazonic acid (CPA) gene clusters, respective accessioned 
gene clusters from A. flavus AF36 (GenBank Acces-
sion numbers: AY510455 and JN712209) were used in 
sequence alignment.

Results and discussion
Discrepancies in total SNPs counts among A. parasiticus 
strains
Ten A. parasiticus genome sequences, which suppos-
edly were derived from eight independent isolates, are 
available from NCBI (Table 1). These sequences include 
five from Ethiopian peanut isolates [12], one from a 
Georgia, USA peanut isolate 68–5 [13], one from an iso-
late (CBS117618) collected from the leaf of an Argen-
tinian wild peanut species (Arachis correntina) used for 
an Aspergillus whole-genus sequencing project [14], 
and three from the same isolate (SU-1 = NRRL2999) 
that had been independently sequenced by three groups 
because of the aforementioned significance in the afla-
toxin biosynthesis research [15, 16]. Resolved genome 
sizes of these A. parasiticus strains range from 30.0 to 
41.5 Mb, and most fall within a range of 38.0–40.0 Mb. 
The extraordinarily small size of strain 68–5 (> 20% less 
than others) likely resulted from poor library construc-
tion and/or an inadequate sequencing read coverage. 

Total SNPs among Ethiopian isolates, with the excep-
tion of E1365, ranged from 227,929 to 303,881 (Fig. 1). 
In contrast, total SNPs from E1365 compared with oth-
ers were nearly 6- to eightfold higher, ranging from 
1,851,399 to 1,858,062, which suggests that E1365 is 
not an A. parasiticus strain. The SU-1 genome, inde-
pendently sequenced by two research groups and here 
designated as MSU and JCVI, had a total SNPs count 
of 3,202 (Fig.  1). This low number of nucleotide vari-
ations likely arises from a combination of sequencing 
errors, mutations accumulated over time, and sub-
culturing. The total SNPs count from SU-1 compared 
with CBS117618 was comparable to those observed 
among the four Ethiopian isolates. A. parasiticus SU-1/
NRRL2999 was originally isolated from a Ugandan pea-
nut in 1961 [17]. Over the past decades, this isolate has 
been given other strain designations, such as Austwick 
strain V. 3734/10, Hodges M-3, SYS-4, ATCC56775, 
ATCC26692, CMI91019b, NRRL5862, and SRRC143, 
depending on whether it was a transfer to another labo-
ratory or was deposited into a culture collection center 
[18, 19]. Despite SU-1/NRRL2999 supposedly being 
the same strain, total SNPs from their comparisons, 
however, were 1,829,933 and 1,845,365. Total SNPs 
count is a good indicator for assigning isolates to spe-
cies level. For example, total SNPs between A. flavus 
L-morphotype and S-morphotype isolates are about 
300,000 while counts from the same morphotype iso-
lates are much lower (20, also Fig. 2). Additionally, total 
SNPs for three A. nidulans strains were around 34,000 
(data not shown). For 18 A. fumigants strains, there was 
a wide range of total SNPs observed although less than 
170,000 (Additional file  1: Fig. S1). Therefore, these 
extraordinarily high counts of total SNPs, which rep-
resented approximately only 95.3% genome sequence 
identity, indicate that the deposited NRRL2999 is a 
completely different species from SU-1.

Fig. 1  Total SNPs from paired genome sequence comparisons among A. parasiticus strains

https://genomevolution.org/coge/
https://genomevolution.org/coge/
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Lack of typical A. parasiticus genetic features in strains E1365 
and NRRL2999
A. parasiticus generally can be differentiated from A. 
flavus based on macro- and micro-morphological char-
acteristics. Moreover, A. parasiticus is unlike A. flavus in 
that it produces aflatoxins G1 and G2, in addition to B1 
and B2, but it does not produce CPA. Molecular events 
underlying these differences in mycotoxin produc-
tion have been well characterized. In A. flavus, the CPA 
biosynthesis gene cluster resides next to the aflatoxin 
biosynthesis gene cluster in a subtelomeric region on 
chromosome III, while in A. parasiticus the CPA gene 
cluster is mostly deleted [21]. Additionally, two early 
pathway genes required for formation of G1 and G2, 
norB and cypA, are intact in A. parasiticus, but in A. fla-
vus S- and L-morphotype strains, there are deletions in 
these genomic regions that render the strains incapable 
of G-type aflatoxin production [22, 23]. A schematic rep-
resentation of the norB-cypA region in the aflatoxin gene 
clusters of A. parasiticus and A. flavus S- and L-morpho-
type isolates are shown (Additional file 1: Fig. S2). Both 
E1365 and NRRL2999 have the unique deletion belong-
ing to L-morphotype strains; that is, the type II norB-
cypA deletion (Table  1). Additionally, a complete 17-kb 
CPA gene cluster was located on contig SJFF01000023.1 
of strain E1365 from nucleotides 1,918,903 to 1,935,762 
and on Chromosome III of NRRL2999 (CP051029.1) 
from nucleotides 5,182,875 to 5,199,734, respectively. 
In contrast, no contigs of large portions homologous to 
the CPA gene cluster were found in either of the SU-1 
genome sequences (Additional file 1: Fig. S3).

NRRL2999 lacks the partial duplicate aflatoxin gene cluster 
present in SU‑1 and shares low total SNPs count with A. flavus 
NRRL3357
Another line of evidence arguing against NRRL2999 
being an A. parasiticus strain came from its missing 
the SU-1 partial duplicate aflatoxin gene cluster that 

contains homologs of aflR-aflJ-adhA-estA-norA-ver1 
and omtB [24]. A near-duplicate copy of ver1 in A. para-
siticus NRRL2999 (= SYS-4) also has been reported [25, 
26]. Sequence alignment showed that in addition to the 
complete aflatoxin gene cluster, a large (14.6  kb) por-
tion of the 17.4-kb genomic fragment that contains the 
partial aflatoxin gene cluster (GenBank Accession num-
ber: AF452809) was located on each of the two SU-
1(JCVI) contigs, JZEE01000205.1 from nucleotides 1 to 
11,696 and JZEE01000720.1 from nucleotides 5 to 2915, 
respectively. Similarly, various contigs of SU-1(MSU), 
the sizes of which were in total of 16.7  kb, were found 
beside its complete aflatoxin gene cluster. However, no 
sequence homologous to the partial aflatoxin gene clus-
ter was present in the NRRL2999 genome sequence, 
which was assembled at the chromosome level, except 
for a complete aflatoxin gene cluster on chromosome III. 
NRRL2999 like E1365, shared similar total SNPs counts 
with other A. flavus S- and L-morphotype isolates except 
NRRL3357 (Fig.  2). This shared low total SNPs count 
indicates that the misidentified NRRL2999 strain is 
indeed a clone of A. flavus NRRL3357 [27].

Limitations
Ugandan and Argentinian isolates of A. parasiticus, 
SU-1 and CBS117618, shared a total SNPs count of 
approximately 290,000 well within reasonable range 
for A. flavus. However, the four Ethiopian isolates and 
one of the American (68–5, taking into consideration 
of its 20% less than average genome size) isolates in 
comparison had total SNPs twice that count (approxi-
mately 580,000). Strikingly, the Ethiopian and Ameri-
can isolates shared total SNPs counts three times that 
of the Ugandan and Argentinian isolates. Whether the 
observed evolutionary distance in terms of total SNPs 
resulted from geographic separation and niche adap-
tation, or the Ethiopian and American isolates are not 
A. parasiticus but very closely-related aspergilli, is 

Fig. 2  Total SNPs from paired genome sequence comparisons among NRRL2999, E1365, and other A. flavus S- and L-morphotype isolates
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not clear. With regard to NRRL2999 and the genome 
sequence associated with it, the source of error, 
whether it was due to an erroneously provided stock 
culture, or a mix-up of sequencing samples of Aspergil-
lus isolates, or a mislabeling of sequence read datasets, 
cannot be pinpointed.
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of E1365, NRRL2999, and SU-1.
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