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Abstract 

Objective:  Our goal was to research and develop exploratory analysis tools for clinical notes, which now are under‑
represented to limit the diversity of data insights on medically relevant applications.

Results:  We characterize how exploratory analysis can affect representation learning on clinical narratives and 
present several self-developed tools to explore sepsis. Our experiments focus on patients with sepsis in the MIMIC-
III Clinical Database or in our institution’s research patient data repository. We found that global embeddings assist 
in learning local representations of clinical notes. Second, aligning at any specific time facilitates the use of learning 
models by pooling more available clinical notes to form a training set. Furthermore, reconstruction of the timeline 
enhances downstream-processing techniques by emphasizing temporal expressions and temporal relationships 
in clinical documentation. We demonstrate that clustering helps plot various types of clinical notes against a scale, 
which conveys a sense of the range or spread of the data and is useful for understanding data correlations. Appro‑
priate exploratory analysis tools provide keen insights into preprocessing clinical notes, thereby further enhancing 
downstream analysis capabilities, making data driven medicine possible. Our examples can help generate better data 
representation of clinical documentation for models with improved performance and interpretability.
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Introduction
Sepsis, a global health concern [1], is defined as “life-
threatening organ dysfunction caused by a dysregulated 
host response to infection [2, 3].” With high rates of mor-
bidity, readmission, and mortality, [3–6], sepsis is consid-
ered one of the 12 leading causes of death in the United 
States [7]. Although previous work highlighted that sep-
sis has a vicious cycle in which inflammation induces and 
exacerbates coagulopathies and organ damage [8, 9], the 
precise description of each sepsis episode (e.g., duration, 
pattern) remains unclear. Further, there is very limited 

data on the clinical relevance and impact of some patho-
gens, (e.g., anaerobic bacteria) in sepsis [2].

Data-driven medicine has not only the potential to 
improve the speed and accuracy of diagnosis but to 
unlock the possibility of personalized medical treat-
ments. However, the underrepresentation of exploratory 
analysis tools for clinical notes has limited the diver-
sity of data insights on medically relevant applications. 
Exploratory analysis, which goes beyond basic initial data 
analysis tasks (i.e., sort, filter, aggregate, correlate, group, 
derive attributes), assists in gaining insights from raw 
data prior to training learning models [10]. Clinical notes 
can contain summaries (e.g., the history of present ill-
ness section) that describe and illustrate the longitudinal 
course of particular clinical events or situations experi-
enced by patients [11, 12]. There are obstacles to machine 
understanding capabilities due to the large amount of 
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information recorded in clinical notes. These challenges 
arise as clinical notes may follow specific formats (e.g., 
templates) and may contain redundancies, misspellings, 
relationships, negations, and abbreviations that affect 
the clinical representation of concepts. Researchers have 
framed these various note-related challenges as deep or 
machine learning tasks and have adopted different algo-
rithms to tackle them. A common strategy is to trans-
form the notes into an appropriate data representation 
for downstream analysis. Nevertheless, learning to gener-
ate better representations may involve a hierarchy of rep-
resentations from object parts to scenes, which require 
different levels of granularity. The lack of exploratory 
analysis tools with appropriate data preprocessing abili-
ties has restricted models to those exhibiting poor per-
formance and interpretability.

In this study, we characterize how exploratory analysis 
can affect representation learning on clinical narratives 
and present several self-developed tools to explore sepsis.

Main text
Methods
Embeddings
Embeddings have dominated the proceedings of con-
ferences in recent years; for example, word embeddings 
(e.g., word2vec [13]) can be generated using various 
methods such as neural networks, co-occurrence matrix, 
and probabilistic models. It should be noted that embed-
dings as a lower-dimensional representation of data 
can offer both global (e.g., sentence or document level 
embeddings) and local (e.g., word embeddings) per-
spectives. A word embedding typically utilizes the bag-
of-words model, a standard choice in representation 
learning, combined with substantial preprocessing [14]. 
For example, the bag of words with TF-IDF weighting 
representation dominates others with larger sample size 
[15]. Roberts et al. [16] used a comprehensive set of fea-
tures in his classification of semantic relations: context 
features (e.g., n-gram), nested relation features (connec-
tions in the text span between candidate pairs of con-
cepts), single concept features (e.g., covered words and 
concept types), Wikipedia features (e.g., concepts match-
ing Wikipedia titles), concept bi-grams features, and 
similarity features. However, the bag of words model is 
inherited from the implicit one-hot encoding of words. 
One main approach to overcome the defects is to use 
explicit domain knowledge, namely expert-curated tech-
niques developed in natural language processing (NLP) 
applications. Topic models such as latent Dirichlet allo-
cation (LDA) [17] represent another alternative; how-
ever, aggregation for the LDA representation significantly 
underperforms the bag of words representation except 
when using very small training sets.

Embeddings can also be used to compute the similar-
ity in meaning between short and long text. We imple-
mented an algorithm based on Charikar’s SimHash [18] 
under the K-means clustering paradigm to help with 
local representation learning [19]. Our algorithm (1) 
embedded each clinical document into a fingerprint, (2) 
partitioned those fingerprints into several (e.g., K = 10) 
clusters, (3) designated each cluster representative as 
an example, which is a fingerprint of real clinical notes 
closest to the centroid, and then (4) learned the local 
representation from the examples (e.g., feature engineer-
ing, labeling). Document embedding can be replaced by 
representative text segments (i.e., sections of the clinical 
document).

Data alignment
Alignment allows data to fetched efficiently. As shown in 
Fig. 1, there exist multiple timelines (i.e., at least two) in 
a clinical corpus. The external timeline (see Fig. 1b) can 
be arranged at the level of either a patient or a clinical 
note. It is easy to understand how to insert notes from 
each domain into the appropriate chronological place for 
the patients in the corpus. Our previous work [20, 21] 
aligned the clinical corpus (based on patient death time 

(a)align clinical notes with timestamps

(b)express the internal timeline by capturing
temporal expressions from a clinical note
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Figure 1  An illustration of the timelines of clinical notes



Page 3 of 6Zhu et al. BMC Res Notes          (2021) 14:136 	

or discharge time) in chronological order at the level of 
the clinical notes, which can provide a larger training set 
for deep or machine learning models.

Alternatively, alignment can be annotated based on 
temporal expressions in the document. The internal 
timeline (see Fig.  1a) is located in a clinical document 
by capturing temporal expressions. Temporal expres-
sions found within these notes provide cues about rela-
tionships between clinical events. While useful for 
subsequent analysis tasks, learning temporal expressions 
is challenging due to the variety of ways in which they 
are expressed, as they can be based on a start time (e.g., 
a medication administration), qualitative constraint rep-
resentation (e.g., days prior to death), or duration-based 
representation (e.g., a sepsis episode, a hospital stay) [22]. 
One common practice to obtain temporal expressions 
is to retrieve the temporal dimension of existing objects 
(i.e., the creation time for a specific clinical entity) and 
utilize this as a temporal component. Another approach 
utilizes TimeML to annotate all time-oriented informa-
tion of task-specific entries (http://​www.​timeml.​org) [23] 
or other markup languages to meet the requirements of 
temporal reasoning tasks. However, both practices have 
shortcomings: while the former is too naïve to effectively 
process detailed information on clinical entities, the lat-
ter relies on rule-based natural language processing 
capabilities that require manual effort to recognize novel 
temporal patterns. Jia et  al. [24] suggest annotating any 
temporal expression in a clinical document that contains 
at least one of the following: (a) explicit time expressions 
(e.g., dates, times); (b) implicit temporal signals (i.e., cue 
words for temporal relations); (c) ordinal words (e.g., 
‘first’).

Data reconstruction
Data reconstruction is mostly used to process time series 
data to solve the information loss issue. We executed a 
classic pattern mining PrefixSpan [25] by considering a 
complete set of ordered frequent patterns.

We developed a data reconstruction algorithm [26] 
to transform free-text clinical notes into a set of time-
stamped (or time-anchored) clinical entities, which hap-
pen to be represented in a sequential data format. First, 
the data reconstruction algorithm detects if an expression 
has temporal intent. Second, it decomposes and rewrites 
the expression into non-temporal sub-expressions and 
temporal constraints. Finally, it clusters similar non-tem-
poral sub-expressions by using an unsupervised sentence 
embedding under the modified K-medoids paradigm. 
Consider a sequential dataset of sepsis symptoms (e.g., 
fever, hypothermia, tachycardia) that includes patterns 
such as “fever reaches peak before a sharp drop in blood 
pressure.” A time expression can also be associated with 

each attribute. For example, each record could be the 
sepsis history of a patient, with a listing of clinical enti-
ties recorded at different times. Using the temporal infor-
mation, it is possible to detect patterns such as “patients 
who are sepsis survivors tend to experience sepsis recur-
rence in the period immediately following hospital dis-
charge.” Additional file 1: Table S1 shows an example of 
sequential data: there are five different times—t1, t2, t3, t4, 
t5; three different patients—P1, P2, P3, and five different 
sepsis symptoms—A, B, C, D, E. In the top half of Addi-
tional file 1: Table S1, each row corresponds to the symp-
toms recorded at a particular time for each patient: e.g., 
at time t3, patient P2 had symptoms A and D. In the bot-
tom half of Additional file 1: Table S1, ordering is instead 
by patient: e.g., patient P3 experienced symptoms A and 
C at time t2.

Results
Our embedding-based exploratory analysis tool can 
assist in a variety of informatics related tasks with an 
O(n) time complexity. These tasks include the detection 
of clinical sublanguages and the automated generation of 
prototype templates.

As shown in Additional file 1: Table S2, we merged sep-
sis nursing notes related to the same patient with adja-
cent time periods together. The format for reconstruction 
results in sequential data that includes information on 
the “cause of sepsis,” “symptoms related to sepsis”, and 
“duration (days or hours) between clinical entities (e.g., 
symptoms).” The underlined sentence in Additional 
file 1: Table S2 is our target. Based on data alignment and 
reconstruction, two records were generated correspond-
ing to Additional file 1: Table S2′s highlighted part:

•	 Non-Hodgkin’s lymphoma (caused sepsis): fever, 
2 days or 42 h (i.e., from DD-MM-YYYY 10:02 to + 2 
DD-MM-YYYY 04:26)

•	 Non-Hodgkin’s lymphoma: hypotension, 2  days or 
42 h

The possible downstream analysis of reconstruction 
results may include risk prediction or pattern mining. 
Making predictions with sequences occurs in a variety 
of ways. A commonly used method involves predicting 
the next value for a given input sequence. For instance, 
framing the problem as “does fever occur in this case of 
sepsis within a specified time?” is a sequence classifica-
tion task that involves predicting a class label for a given 
input sequence. Given the clinical entity “fever:” for 
example, it is easy to use sequential data to estimate: (1) 
whether fever “occurred” or “did not occur” during an 
episode of sepsis, (2) the duration of the “fever,” and (3) 

http://www.timeml.org
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the relationship between the “fever” and other clinical 
entities (e.g., tachycardia, tachypnoea, blood leukocyte 
changes).

We found a total of 957 patterns from PrefixSpan pat-
tern mining of all corpora (see Table 1 with PR_Dc). We 
obtained similar and comparable results on the public 
MIMIC-III Clinical Database [27] as shown in Table 1.

Discussion and conclusions
Our main finding was that it is possible to develop novel 
exploratory analysis tools to improve representation 
learning on clinical narratives to explore sepsis. The 
ability for exploratory analysis tools to embody scal-
ability and usability features conveys detailed informa-
tion related to clinical disease progression, which could 
be applied to inform therapeutic and disease manage-
ment decisions. Appropriate exploratory analysis tools 
provide a keen insight into clinical notes to help gener-
ate better data representations for models with improved 
performance and interpretability. For example, although 
deidentified open access data lack available time expres-
sions, we obtained similar and comparable pattern 
results with our private corpora by only considering the 
sequence in time.

We found that global embeddings assist in learning 
local representations of clinical notes. Data alignment at 
any specific time facilitates the use of learning models by 
increasing the size of the training set. Reconstruction of 

the data enhances downstream-processing techniques 
by emphasizing useful representations (e.g., temporal 
expression) in clinical documentation. We demonstrated 
how clustering can help plot various types of clinical 
notes against a scale, which conveys a sense of range or 
spread of the data and is useful in understanding data 
correlations.

As our study investigated methods for exploratory 
analysis of general clinical notes corpora instead of 
patients who are carefully chosen from clinical trials, our 
findings provide new insights into sepsis using real world 
data. This approach simplifies the process of knowledge 
abstraction from clinical practice for practical applica-
tions in clinical research.

Limitations
One limitation in our study is that we only used data dis-
tribution to explore the corpus. While nursing and phy-
sician progress and discharge summaries for a patient 
may have various correlations to different stages of sepsis 
progression, merging them to apply learning methods to 
compute a score to balance the differences (i.e., priority, 
dataset size) among the clinical documents may not be 
ideal. For example, we did not consider the potentially 
complex relationships among the corpora nor any struc-
tured clinical data (i.e., symptoms documented in the 
patients’ problem list in the EHR).

Table 1  The top 10 results of sepsis symptom patterns compared in the private and public datasets

Corpus Freq Pattern

PR_Dc 76 [‘respiratory failure’, ‘hypoxemic respiratory’, ‘hypoxemic resp’]

23 [‘respiratory failure’, ‘acute hypoxemic’, ‘hypoxemic respiratory’, ‘hypoxemic resp’]

16 [‘respiratory failure’, ‘worsening respiratory’, ‘respiratory status’]

14 [‘cystic lesion’, ‘6 cm cystic’, ‘septated cystic’, ‘abscess drainage’, ‘felt SOB’]

13 [‘respiratory distress’, ‘purulent drainage’, ‘denies chill’]

13 [‘LLE cellulitis’, ‘redness noted’]

12 [‘hypoxemic respiratory’, ‘developed hypoxemic’, ‘hypoxemic resp’]

11 [‘echinococcal cysts’, ‘showing cystic’, ‘cystic lesion’]

10 [‘respiratory failure’, ‘respiratory distress’, ‘acute respiratory’]

8 [‘hepaitic lesion’, ‘cystic lesion’, ‘septated cystic’, ‘abscess drainage’, ‘felt SOB’]

MIMIC-III 34 [’altered mental’, ’hypercarbic respiratory’]

22 [’yellow secretion’, ’respiratory failure’]

18 [’respiratory failure’, ’breathing noted’]

17 [’respiratory distress’, ’white secretions’]

9 [’breath sounds’, ’tan secretions’]

8 [’respiratory failure’, ’thick secretion’]

6 [’breath sounds’, ’thick secretion’]

5 [‘cystitis’, ’secretions suctioned’, ’mouthing words’]

4 [’tinged secretions’, ’uncomfortable’]

2 [‘abdominal discomfort’, ‘brown drainage’, ‘hypercarbic respiratory’, ‘pulm 
edema’]
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pre-defined types and clinicians’ free-text entries, were found in this type 
of clinical notes. Approximately two-thirds of the documents used system 
pre-defined types. Authorship was unevenly distributed, with a small propor‑
tion of the clinicians responsible for a large proportion of notes. The average 

number of physician progress notes per patient per day in one hospital stay 
was 1.05 notes.
Discharge summaries: We retrieved 3573 free-text discharge summaries 
corresponding to the same hospital stays/patients described in the physician 
progress notes section above. The maximum length of discharge summaries 
was 4000 words. The average duration for a hospital stay was 9.80 days, with a 
maximum duration of 15 days and a minimum duration of 1 day. The average 
number of discharge summaries per patient was 4.97 documents, indicating 
that most sepsis patients were hospitalized multiple times.
B. Public sepsis corpora: MIMIC_III
MIMIC-III [27], run by the MIT PhysioNet Team, integrates deidentified, critical 
care clinical data of patients admitted to the Beth Israel Deaconess Medical 
Center in Boston, Massachusetts between 2001 and 2012. The open nature of 
the data allows clinical studies to be reproduced and improved in ways that 
would not otherwise be possible. Based on an explicit ICD-9-CM code (i.e., 
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