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Abstract 

Objective:  Currently, next generation sequencing (NGS) is widely used to decode potential novel or variant patho-
gens both in emergent outbreaks and in routine clinical practice. However, the efficient identification of novel or 
diverged pathogenomic compositions remains a big challenge. It is especially true for short DNA sequence fragments 
from NGS, since sequence similarity searching is vulnerable to false negatives or false positives, as is mismatching or 
matching with unrelated proteins. Therefore, this study aimed to establish a bioinformatics approach that can gener-
ate unique motif sequences for profiling searching, resulting in high specificity and sensitivity.

Results:  In this study, we introduced a Shortest Unique Representative Hidden Markov Model (HMM) approach 
to identify bacterial toxin, virulence factor (VF), and antimicrobial resistance (AR) in short sequence reads. We first 
construct unique representative domain sequences of toxin genes, VFs, and ARs to avoid potential false positives, 
and then to use HMM models to accurately identify potential toxin, VF, and AR fragments. The benchmark shows this 
approach can achieve relatively high specificity and sensitivity if the appropriate cutoff value is applied. Our approach 
can be used to recognize the protein sequences of known toxins and pathogens, identifies their common characteris-
tics and then searches for similar sequences in other organisms.
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Introduction
Several specialized databases (Tox-Prot [1], Virulence 
Factors Database [2], the Toxin and Virulence Data-
base [3], Comprehensive Antibiotic Resistance Database 
(CARD) [4], and AR database (ARDB)) have been estab-
lished to collect microbial toxin, virulence factor, and 
antimicrobial resistance genes sequences.  One major 
limitation of these databases is that the VF and AR genes 
they contain are heavily biased towards easily cultivable 

model microbial organisms, making it difficult to iden-
tify remote homologues or novel resistance sequences 
present in fastidious or uncultured bacteria [5]. This bias 
complicates VF and AR gene identification across less 
commonly studied bacteria, a difficulty that is magnified 
by the diverse and complicated mechanisms of AR and 
VF. One potential solution to overcome this bias is to use 
the hidden Markov model  (HMM) approach, which can 
find sequences with similar function but low sequence 
identity [6]. However, HMM-based approaches may 
have poor specificity and may not be able to distinguish 
between protein families with closely related functions.
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One approach to mitigate false positive hits to regions 
of local homology is to identify and map against only 
unique substrings of protein sequences. Therefore, it 
is important to determine unique identifying strings 
("markers") for all toxins, VF, and AR. For this reason, 
Curtis Huttenhower’s group first developed the Short-
BRED (Short, Better Representative Extract Data-
set) (https://​hutte​nhower.​sph.​harva​rd.​edu/​short​bred) 
approach for assembly‐free identification of targeted 
genes in metagenomes [7]. ShortBRED builds short pep-
tide sequences (markers) that are unique to a specific 
protein family, which are then used as a reference to map 
metagenomic reads. Since ShortBRED takes a set of pro-
tein sequences and reduces them to a set of unique iden-
tifying strings ("markers") for downstream Usearch [8], 
ShortBRED favors specificity (avoiding false positives) 
over perfect sensitivity (detecting all true positives). We 
recently further developed the Shortest Unique Repre-
sentative Hidden Markov Model (SurHMM) approach 
to combine the best parts of ShortBRED and the hidden 
Markov model (HMM). Leveraging all existing Short-
BRED markers, we are able to quickly and accurately 
assess the toxin, VF, and AR gene fragments presented 
among protein sequences of NGS reads/contigs or cus-
tomer-ordered oligo nucleotide sequences by searching 
their specific motif-based profile.

Main text
Methods
Running SurHMM
SurHMM has seven-step process shown in Fig. 1: (i) col-
lecting protein sequences of interest (color) and back-
ground non-interest protein sequences from reference 
database (black), (ii) clustering protein of interest into 
families using CD-HIT [9], then generating consensus 
sequences (bold) of each family using MUSCLE align-
ment [10], (iii)  using pair-wise sequence alignment to 
identify overlaps between consensus sequences and 
between consensus sequences and background non-
interest proteins. Overlaps (blue shaded) represent 
non-unique peptides, (iv) extracting unique peptides 
by searching those regions that don’t overlap with any 
background references and other consensus, use them 
as unique representative markers, (v) taking marker 
sequences align with protein family of interest (from the 
step ii), (vi) constructs HMM profiles from alignment; 
(iv) and then scans the finished/drafted genome, or pro-
tein sequences from metagenomic reads/contigs using 
these HMM profiles to determine presence/absence of 
their corresponding families. SurHMM can be installed 
and run by following the instruction at GitHub (https://​
gitlab.​com/​gary_​xie/​surhm​ms). It consists of two parts: 
(1) ShortBRED-Identify that is identical to ShortBRED 

Fig. 1  SurHMM approach creates Shortest Unique Representative Hidden Markov Model (SurHMM) for protein families of interest first, then 
identifies markers in targeted genomes and metagenomes by scanning predicted open reading frames or six-frame translation of given nucleotide 
reads. Drawing inspired from [7]

https://huttenhower.sph.harvard.edu/shortbred
https://gitlab.com/gary_xie/surhmms
https://gitlab.com/gary_xie/surhmms
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[7] covers steps (ii–iv)—This takes a FASTA file of amino 
acid sequences, searches for overlap among itself and 
against a separate reference file of amino acid sequences, 
and then produces a FASTA file of markers. (2) Hmmer-
identify covers steps (v-vii)- This takes the FASTA file of 
markers and generates its corresponding HMM models, 
then can quantify their relative abundance in a protein 
FASTA file or identity its remote homologs in genome 
protein sequences.

Extracting pre‑computed sequences of ShortBRED marker 
dataset
The consensus sequences of ShortBRED VF markers, an 
updated marker collection (mid-2017) for microbial viru-
lence factors based on input protein sequences compiled 
from  Victors [11],  Virulence Factors Database (VFDB) 
[2], and MvirDB [12] were downloaded from bitbucket at 
the following site: https://​bitbu​cket.​org/​bioba​kery/​short​
bred/​downl​oads/​Short​BRED_​VF_​2017_​marke​rs.​faa.​
gz. Then a subset of bacterial toxins listed at the Cent-
ers for Disease Control Biological Select Agent and Toxin 
page were selected based on its metadata file, including 
Clostridium botulinum toxin, Clostridium perfringens 
Epsilon toxin, Staphylococcal enterotoxin B, Shiga-like 
toxin, and Vibrio cholerae toxin (https://​emerg​ency.​
cdc.​gov/​agent/​agent​list-​categ​ory.​asp). The consensus 
sequences of corresponding toxin were extracted from 
the ShortBRED VF marker sequence file. Similarly, a 
subset of ShortBRED for markers of antibiotic resistance 
(AR) factors based on CARD [4] were also extracted from 
bitbucket at the following site: https://​bitbu​cket.​org/​
bioba​kery/​short​bred/​downl​oads/​Short​BRED_​CARD_​
2017_​marke​rs.​faa.​gz.

Generating a hidden Markov model
We generated HMM profiles for five toxin families, all VF 
families, and all AR families using HMMER (Eddy 1998) 
Version 3.1b2, February 2015. The multiple sequence 
alignment files (in STOCKHOLM format) were created 
for each marker by using the “phmmer” program search 
for each marker sequence against curated VFDB and 
CARD sequence databases, respectively. Then, profile 
HMMs were built with hmmbuild program (http://​www.​
csb.​yale.​edu/​userg​uides/​seq/​hmmer/​docs/​node19.​html) 
for each toxin marker, as well as for all VF and AR gene 
markers. Toxin genes, VF, and AR gene profile databases 
were finally prepared using the hmmpress program, 
which can be found at http://​manpa​ges.​ubuntu.​com/​
manpa​ges/​bionic/​man1/​hmmpr​ess.1.​html. All curated 
hidden Markov models listed in Table  1 can be down-
loaded from GitHub (https://​gitlab.​com/​gary_​xie/​surhm​
ms).

Positive control dataset
A set of 131 AR and 19 VF proteins were extracted from 
CARD [4] and VFDB [2] that were not used in training 
of the original profile HMMs, are treated as a true posi-
tive (TP). All corresponding toxin genes and all VF genes 
were extracted from VFDB [2] based on its metadata 
file. All AR genes from CARD [4] and ARDB [13] were 
extracted.

Negative control dataset
500 curated nonbacterial toxin protein sequences were 
downloaded from a supplementary site [14]. This set of 
data was extracted from Swiss-Prot [15] by combined 
search using the Sequence Retrieval System. The search 
was performed along with the "BUT NOT" option, using 
two information fields: (i) Comment with query word 
"function," and (ii) Comment using "toxin" as query word 
retrieved protein sequences that were examined manu-
ally in order to eliminate toxin proteins. This dataset is 
treated as a true negative (TN) in HMM validation test.

HMM validation
Hmmscan program (protein sequence vs profile-HMM 
database) from the HMMER 3.0 package (ftp://​selab.​
janel​ia.​org/​pub/​softw​are/​hmmer3/​3.0/​hmmer-3.​0-​linux-​
intel-​x86_​64.​tar.​gz), was used for searching non-toxin 
sequences (negative control), all downloaded VF genes 
(positive control) and AR genes (positive control) against 
toxin, VF, and AR HMM profiles respectively. Mean-
while, the hmmsearch program (profile-HMM vs protein 
sequence database) was used for searching toxin profiles 
against non-toxin protein sequences (-control). We set an 
E-value threshold (e value > 1e−5) for both hmmscan and 
hmmsearch programs.

Results
We developed a method to quickly identify protein fam-
ilies of interest with high sensitivity by reducing protein 
families to short, unique, highly representative hidden 

Table 1  Summary of SurHMM generated in this study

Type Profiles

Neurotoxin 61

Shiga_toxin 10

Choliz_toxin 8

Clostridium_perfringens toxin 21

Staphylococcal_toxin 74

Total virulence factors 86,136

Total antimicrobial resistance 3237
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Markov model (SurHMM) profiles (Fig.  1). To create 
these HMM profiles,  our approach  uses two inputs in 
step (i): (1) a FASTA file of proteins-of-interest and 
(2) a comprehensive reference database of background 
protein sequences. The protein sequences of interest 
were first clustered by global sequence homology to 
identify protein families, with each family collapsed to 
form a single consensus sequence in step (ii). Regions 
of a family’s consensus sequence that share strong, local 
sequence homology (“overlaps”) with proteins outside 
of the family of interest are then penalized. Based on 
these overlaps, short peptide markers of non-overlaps 
were isolated from the consensus that best represent 
the protein family. ShortBRED classifies these markers 
into three groups:  True Markers, which do not over-
lap with the other protein families,  Junction Markers, 
which overlap partially with the other protein families, 
and  Quasi Markers, which are completely overlapped 
by another protein family. ShortBRED keeps those True 
Markers and Junction Markers. All Quasi Markers will 
be discarded. In the step (v), we took these consen-
sus sequences of True Markers and Junction Markers 
aligned with curated proteins-family-of-interest from 
the step (ii), then followed by constructing hidden 
Markov models using hmmbuild command and hmm-
press command to prepare an HMM profile database 
in the step (vi). The hmmscan command was used to 
search user-submitted protein sequences or oligonucle-
otide sequences (after six-frame translation) against the 
HMM profile database in the step (vii). The HMM crea-
tion process only needs to be run once for a given set of 
proteins, resulting in a reusable and distributable HMM 
profile database (Table  1). Creating a highly specific 
profile HMM database has three major advantages: (i) 
profile searches allow us to detect those remote hom-
ologues, which typically only have protein sequences 
conserved at some critical residues, (ii) searches against 
this profile database are more accurate, as the exclusion 
of non-specific (overlap) regions reduces false positive 
hits, and (iii) the HMM process is also very quick, as 
the search space is considerably reduced relative to the 
full database.

To evaluate SurHMM, we measured its accuracy in 
testing the known toxin genes and known non-toxin 
genes. For the positive control test, a subset of toxin gene 
and all VF genes were extracted from VFDB, as well as 
all AR genes were extracted from CARD. We tested the 
prediction accuracy of these 131 AR and 19 VF proteins 
not used in training of the original profile HMMs. These 
recruited protein sequences were subsequently incorpo-
rated into the corresponding AR and VF protein families, 
resulting in the final database of AR and VF SurHMM 
used for all further analyses in this study.

For the negative control test, a subset of non-toxin 
genes was extracted from Swiss-Prot. All default param-
eter settings were used, except the E-value threshold set 
at e value > 1e−5. All datasets performed as expected. 
SurHMM did not identify any false positive hits to 
non-toxin genes. In addition, SurHMM did increas-
ing specificity by identifying remote homologues. For 
example. a toxin family in Chryseobacterium piperi with 
sequence similarity to botulinum neurotoxins [16] was 
identified using SurHMM (WP_034687877.1(1.8e−13), 
WP_034681281.1(2.5e−08), and WP_034687872.1 
(7.9e−11)).

Discussion
Other than ShortBRED and our SurHMM, several other 
online resources also provide VF and AR gene screening 
functions, such as VFanalyzer [2], PATRIC [17], VRpro-
file [18], and VirulenceFinder [19]. Many of them depend 
solely on BLAST searches. It is worth noting that in prac-
tical terms it is unrealistic to prevent the inclusion of bad 
BLAST hits in a typical large-scale data analysis since 
there is no universal cutoff to exclude bad BLAST hits 
from unrelated protein families. In general, any BLAST-
like cutoffs are heuristic in nature; they are inevitably 
either too stringent or not stringent enough, so there is 
no perfect universal threshold that is suitable for all data-
sets. Due to these reasons and the inherent complexity 
of bacterial VF/AR, accurate in silico identification of VF 
and AR is still a challenging task. For example, although 
ShortBRED was able to keep false positives at a low level 
(< 5%), ShortBRED achieved true positive repeat and 
false positive repeat values comparable to or exceeding 
the centroids method, when increasing the number of 
protein families present and the share they comprised of 
the metagenome (S1 Table of [7]).

SurHMM can identify distant homologs through 
searching unique motifs that still have been preserved. 
Searches against SurHMM database are also more accu-
rate, as the exclusion of non-specific (overlap) regions 
reduces false positive hits and the search space is con-
siderably reduced relative to the full database. Therefore, 
SurHMM can obtain both higher speed and specificity 
relative to other approaches by reducing protein families 
to short, unique, highly representative hidden Markov 
model (SurHMM) profiles, In addition to identifying VF 
and AR genes, SurHMM approach can apply to other 
homology-based search for any protein family of inter-
est, such as for novel pathogen detection, synthetic DNA 
screening, microbial communities profiling of protein 
families of interest, as well as aiding diagnosis or char-
acterization of infections. Although HMM search can 
be used for identifying homologous protein or DNA 
sequences, our SurHMM profiled were trained by VF and 
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AR protein sequences. Therefore, we can only scan pro-
tein sequences or six reading frame translations of DNA 
sequences against our SurHMM profiles. Theoretically, 
SurHMM approach could be applied to DNA sequence 
level, as well as eukaryotic sequences, if SurHMM pro-
files had been trained by appropriate datasets.

Conclusion
Sequence similarity searching is vulnerable to false nega-
tives or false positives, as mismatching or matching with 
unrelated proteins. Here, we are introducing the Short-
est Unique Representative Hidden Markov Models 
(surHMM) approach for identifying potential bacterial 
toxin, virulence factor (VF), and antimicrobial resist-
ance (AR) sequences. Since it combines the best parts of 
ShortBRED (Short better representative extract dataset) 
and the hidden Markov model (HMM), our approach 
generates unique motif sequences for profiling searching, 
resulting in high specificity and sensitivity.

Limitations
In order to mitigate the lack of specificity and minimize 
false positives, SurHMM would need to use curated 
thresholds (for example, a gathering threshold) for each 
profile HMM. These profile-specific gathering threshold 
values would set an inclusion or exclusion bit score cut-
off by comparing it with test datasets containing negative 
sequences.
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