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A model‑agnostic approach 
for understanding heart failure risk factors
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Abstract 

Objective:  Understanding the risk factors for developing heart failure among patients with type 2 diabetes can 
contribute to preventing deterioration of quality of life for those persons. Electronic health records (EHR) provide an 
opportunity to use sophisticated machine learning models to understand and compare the effect of different risk 
factors for developing HF. As the complexity of the model increases, however, the transparency of the model often 
decreases. To interpret the results, we aimed to develop a model-agnostic approach to shed light on complex models 
and interpret the effect of features on developing heart failure. Using the HealthFacts EHR database of the Cerner EHR, 
we extracted the records of 723 patients with at least 6 yeas of follow up of type 2 diabetes, of whom 134 developed 
heart failure. Using age and comorbidities as features and heart failure as the outcome, we trained logistic regression, 
random forest, XGBoost, neural network, and then applied our proposed approach to rank the effect of each factor on 
developing heart failure.

Results:  Compared to the “importance score” built-in function of XGBoost, our proposed approach was more accu‑
rate in ranking the effect of the different risk factors on developing heart failure.
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Introduction
Heart Failure (HF) is a serious problem for public health 
and the economy in the United States[1–3]. Coronary 
artery disease and hypertension significantly increase the 
risk of developing HF [4, 5]. Results from the Framing-
ham Heart Study showed that the risk of developing HF 
among patients with hypertension is up to three times 
more than that of normotensive people [6]. atrial fibrilla-
tion [7], chronic obstructive pulmonary disease (COPD)
[8, 9], chronic kidney disease (CKD) [10], anemia [12], 
asthma [11, 13], arthritis [14], depression [15], and can-
cer [16] have also been identified to correlate with HF.

Many research studies have compared the effect of dif-
ferent comorbidities on developing HF [17]. The results 
of these studies, however, are not always consistent. 

Coronary heart disease, diabetes, and hypertension have 
been identified as the most important risk factors [18]. 
Levy and his colleagues [6] monitored 5,143 people for 
20.1 years and reported that hypertension was the big-
gest risk factor for developing HF. In a separate study, the 
authors found that coronary heart disease had the biggest 
effect on developing HF [19]. Diabetes and HF, which are 
often called “twin epidemics”, are highly correlated [20]. 
Comparing the effect of the above-mentioned comor-
bidities on the risk of developing HF among patients with 
type 2 diabetes is thus of particular interest for preven-
tion and treatment purposes.

Electronic Health Records (EHR) are increasingly 
employed by clinical researchers. Using EHR data, 
machine learning algorithms can help to understand 
the effect of different comorbidities on the clini-
cal outcome [21, 22]. In the current study, we used 
HealthFacts, an EHR-based database developed and 
maintained by Cerner Corporation, to understand and 
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interpret the effect of age and different well-known 
comorbidities on developing HF among patients with 
type 2 diabetes.

Different modeling methods, such as logistic regres-
sion, or machine learning methods, such as random 
forest, XGBoost, and neural networks, can be used for 
our binary classification task of developing HF. Given 
the increasing amount of EHR data, more sophisticated 
models may improve the assessment of the risk of a clini-
cal outcome. However, the most powerful predictive 
models, such as the ensemble model and deep neural 
network, are not interpretable [23]. Identifying the most 
significant factors for the risk of HF among patients with 
diabetes requires improvement of the global interpret-
ability of machine learning algorithms.

Different researchers from different fields of study have 
sought to understand the effect of individual features on 
an outcome when the underlying relationship is nonlin-
ear and nonmonotonic [24, 25]. One approach is to per-
turb the values of a given feature with random numbers 
while keeping the other features fixed in order to investi-
gate the relationship between the change of the response 
and to calculate the “situational importance” of each fea-
ture [26, 27]. The main difficulty with this approach are 
that many randomly generated values do not happen in 
the real world, and that the approach does not consider 
the underlying dependent relationship between variables.

The Shapley value, based on a study by Shapley decades 
ago [28], has been used to investigate the global effect of 
each individual feature on the response. For a feature, its 
Shapley value is the average marginal contribution of that 
feature across all possible combinations of all features. 
Although the Shapley value can help rank the importance 
of the features, it is computationally very expensive espe-
cially when the number of features is large. Like most of 
the permutation-based algorithms, its other drawback is 
that it may include unrealistic instances in the computa-
tion in cases where the features are correlated.

Another model-agnostic approach to compare and 
understand the global effect of features on the response 
is through the use of a “global surrogate.” The idea behind 
this is to train an interpretable model (such as a linear 
model) on the features and their predictions from the 
black-box model to approximate the underlying model. 
Local interpretable model-agnostic explanations (LIME) 
is a method that is capable of providing both local and 
global interpretability using this approach [29].

Although all the methods mentioned above can shed 
light on a black-box model, all of them have some degree 
of randomness and do not necessarily lead to the same 
result when repeated for the same underlying model. 
The LIME and Shapley value methods are very compu-
tationally expensive. Developing an approach that is 

deterministic in results with less computational burden 
can make a significant contribution to the field.

Main text
Methods
Data procurement and preparation
In this research study, we used the Health Facts database, 
which has more than 400 million encounters from 689 
different hospitals. We first identified patients with type 
2 diabetes using ICD-9 and ICD-10 codes, while requir-
ing at least one encounter without the diabetes ICD 
codes before the first diabetes visit. The date of the first 
encounter with the ICD diabetes codes was considered 
as the index date. We excluded patients who had devel-
oped HF prior to the index date. We required that each 
patient have at least six years of follow up with at least 
one encounters each year. Most patients in the database 
do not have long term follow-up, thus we could iden-
tify only 723 patients. The average age for patients who 
developed HF was 68 years old (min = 40, max = 90) and 
the average age for patients who did not develop HF was 
64.37 years old (min = 40, max = 90). The cohort charac-
teristics at the end of the follow-up time can be seen in 
Additional file 1: Table S1.

Model building
Since the data size was relatively small, we bootstrapped 
it with replacement and increased the size to 10,723. We 
randomly selected 80% of the encounters for training and 
20% for testing purpose. Using the Sklearn Python pack-
age, we fitted logistic regression, random forest, XGBoost 
models, and used the Keras python package to fit a deep 
neural network model to the data. We tuned hyperpa-
rameters through five-fold cross-validation. For the neu-
ral nets, the best model by the ROC-AUC measurement, 
was a fully connected network with four hidden layers 
and different nodes, ranging from 5 to 22 nodes, imple-
menting sigmoid and ReLu activation functions. To pre-
vent overfitting, dropout at a rate of 0.25 was applied to 
each hidden layer. Finally, using the test data, we found 
that ROC-AUC for XGBoost was greater than the other 
three methods. The only transparent method, logistic 
regression, was outperformed by the black-box methods. 
The ROC-AUC of the different models are as follows: 
Logistic regression: 0.62; Neural network: 0.68; Random 
forest: 0.74; XGBoost: 0.91. In order to understand the 
effect of different features on the risk of HF, we need to 
interpret the black-box models.

Effect score
We developed a model-agnostic metric called “effect 
score” to compare and interpret the effect of each fea-
ture on the risk of the clinical outcome. This method 
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calculates how the logit of the output changes if the cur-
rent value of feature i  (xc

i
) changes from a chosen refer-

ence value 
(

x
r
i

)

 for that feature, e.g., a normal value for 
a lab test. In order to lower the chance of incorporating 
unrealistic possibilities by using random values, the value 
of feature i is replaced only with other observed values 
for the same feature. Given that there are m features and 
n observations in the system, the algorithm for comput-
ing the effect score for feature xi can be seen in Table 1.

Results and discussion
Since the XGBoost model resulted in the highest area 
under the ROC curve, we used that model for under-
standing HF risk factors. As there was only one con-
tinuous variable, “age”, we only used the “effect score” 
algorithm for comparing the effects of categorical vari-
ables on the risk of HF. The result of the algorithm can be 
seen in Table 2.

As it can be seen in Table 2, the highest score = 1.75 is 
achieved with ischemic heart disease, thus it is consid-
ered the most influential individual risk factor for devel-
oping HF. This score can be interpreted as meaning that 
if all other features for patienti and patientj are the same 
and patienti has ischemic heart disease but patientj has 
not, the logit of developing HF for patienti is on average 
1.75 more than that of patientj . The other scores can be 
interpreted in a similar fashion.

One might argue that the “effect score” is more help-
ful if the underlying model is a neural network model. 
Ensemble methods, including XGBoost, can provide an 
“importance score” that ranks the degree of influence 
of different features on the output. Difficulty with the 
“importance score” occurs when the predictors are corre-
lated, like those in this case; a result that leads noninflu-
ential predictors to be preferred to significant ones [30]. 
When we applied the importance metric through Sklearn 
library in Python, this issue was observed in our use case 
as well. The ranking of the features from that method is 
as follows: CKD, COPD, anemia, IHD, Depression, AF, 

HTN, cancer, and Arthritis. Using this metric, hyper-
tension, long known as a very important factor in the 
development of HF [6, 18, 19] has less importance than 
depression. It is highly doubtful that depression is clini-
cally a more significant risk factor than hypertension. 
This ranking is not consistent with the current clinical.

knowledge. Additionally, it should be noted that the 
Sklearn approach provides no avenue for interpretation 
of the meaning of the scores.

Another use of our proposed approach is to under-
stand the nonlinear relationship between a continous 
feature and the output. In Fig. 1, it can be seen that, as 
it was expected [31], the risk of HF increases as the age 
increases. Each point denotes the difference between 
the logit of risk of HF for patienti with that of patientj , 
who has the same comorbidities but is 40 years old. The 
LOWESS (locally weighted scatterplot smoothing) tech-
nique was used to show the trend between the age and 
risk of HF on the population level. The figure suggests the 
relationship between the age and the risk of HF is linear. 
The diversion of observations at the same age indicates 
that there is a correlation between the age and different 
comorbid conditions.

Table 1  Different steps to compute the effect score

Step number Steps

1 fit a machine learning model (for a neural network model, the activation function of the output layer needs to be a sigmoid function)

2 determine a reference value xri
3 esi,j = logit

(

f
(

x
j
1, . . . , x

j
i , . . . , x

j
n

))

− logit(f (x
j
1, . . . , x

r
i , . . . , x

j
n)

)

- where f (.) is the prediction of the probability of the positive class by the model
- if xi,j = xi,k , then consider the average of them

4 ESi =
∑n

j=1 |esi,j |

5 For a continuous feature, plot esi,j against the value of xi,jǫn{obs} to depict the effect of xi at different values on the output with respect 
to the reference

6 Rank ESi of categorial and continuous features to compare strength of different features

Table 2  Effect scores for categorical features

Feature Effect score

Ischemic heart disease (IHD) 1.75

Hypertension (HTN) 1.68

Atrial fibrillation (AF) 1.52

Chronic obstructive pulmonary disease (COPD) 1.52

Cancer 1.48

Chronic kidney disease (CKD) 1.40

Anemia 1.36

Asthma 1.34

Arthritis 1.02

Depression 1.00
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Summary and conclusion
Enhancing interpretation of machine learning mod-
els can contribute to a better understanding of clini-
cal events. In this paper, we propose a model-agnostic 
approach to explore how a complex machine learning 
model can be used to investigate risk factors associated 
with developing HF among patients with type 2 diabetes. 
Our approach enables a researcher to interpret the global 
effect of each individual feature on the outcome; compare 
the significance of different individual categorical vari-
ables; appreciate a nonlinear nonmonotonic relationship 
between a continuous feature and outcome; visualize the 
effect of each individual observation on the outcome; 
and fit a trendline through locally weighted scatterplot 
smoothing to understand the global effect of that feature.

Limitations

• In future work, the proposed algorithm should be 
implemented using a higher quality EHR database 
with larger patient samples.
• This algorithm should not be used to compare the 
effect of a continuous variable on the outcome with 
that of a categorical variable.
• When the number of levels of two categorical vari-
ables are far different, the results from this algorithm 
may be biased.
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The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13104-​021-​05596-7.
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Fig. 1  Visualization of relationship between age and heart failure

https://doi.org/10.1186/s13104-021-05596-7
https://doi.org/10.1186/s13104-021-05596-7


Page 5 of 5Miran et al. BMC Res Notes          (2021) 14:184 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Received: 3 January 2021   Accepted: 5 May 2021

References

	1.	 Benjamin EJ, et al. Heart disease and stroke Statistics-2019 update a 
report from the American Heart Association. Circulation. 2019. https://​
doi.​org/​10.​1161/​HHF.​0b013​e3182​91329a.

	2.	 Heidenreich PA, et al. Forecasting the impact of in the United States: a 
policy statement from the American Heart Association. Circ Heart Fail. 
2013;6(3):606–19.

	3.	 Adams KF Jr, et al. Characteristics and outcomes of patients hospitalized 
for heart failure in the United States: rationale, design, and preliminary 
observations from the first 100,000 cases in the Acute Decompensated 
Heart Failure National Registry (ADHERE). Am Heart J. 2005;149(2):209–16.

	4.	 Fox K, et al. Coronary artery disease as the cause of incident heart failure 
in the population. Eur Heart J. 2001;22(3):228–36.

	5.	 Gheorghiade M, Bonow RO. Chronic heart failure in the United States: a 
manifestation of coronary artery disease. Circulation. 1998;97(3):282–9.

	6.	 Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from 
hypertension to congestive heart failure. JAMA. 1996;275(20):1557–62.

	7.	 Mackenzie J. Diseases of the Heart, ed 3. London: H. Frowde; 1913.
	8.	 Le Jemtel TH, Padeletti M, Jelic S. Diagnostic and therapeutic challenges 

in patients with coexistent chronic obstructive pulmonary disease and 
chronic heart failure. J Am Coll Cardiol. 2007;49(2):171–80.

	9.	 Ni H, Nauman DJ, Hershberger RE. Managed care and outcomes of 
hospitalization among elderly patients with congestive heart failure. Arch 
Intern Med. 1998;158(11):1231–6.

	10.	 Heywood JT, et al. High prevalence of renal dysfunction and its impact 
on outcome in 118,465 patients hospitalized with acute decompen‑
sated heart failure: a report from the ADHERE database. J Cardiac Fail. 
2007;13(6):422–30.

	11.	 Spence RK. The economic burden of anemia in heart failure. Heart Fail 
Clin. 2010;6(3):373–83.

	12.	 Groenveld HF, et al. Anemia and mortality in heart failure patients: a sys‑
tematic review and meta-analysis. J Am Coll Cardiol. 2008;52(10):818–27.

	13.	 Sun D, et al. A history of asthma from childhood and left ventricular mass 
in asymptomatic young adults: the Bogalusa Heart Study. JACC Heart Fail. 
2017;5(7):497–504.

	14.	 Khalid U, et al. Incident heart failure in patients with rheumatoid arthritis: 
a nationwide cohort study. J Am Heart Assoc. 2018;7(2):e007227.

	15.	 Williams SA, Kasl SV, Heiat A, Abramson JL, Krumholz HM, Vaccarino V. 
Depression and risk of heart failure among the elderly: a prospective 
community-based study. Psychosom Med. 2002;64(1):6–12.

	16.	 Bowles EJA, et al. Risk of heart failure in breast cancer patients after 
anthracycline and trastuzumab treatment: a retrospective cohort study. J 
Natl Cancer Inst. 2012;104(17):1293–305.

	17.	 Bozkurt B, et al. Contributory risk and management of comorbidities of 
hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic 
syndrome in chronic heart failure: a scientific statement from the Ameri‑
can Heart Association. Circulation. 2016;134(23):e535–78.

	18.	 Dunlay SM, Weston SA, Jacobsen SJ, Roger VL. Risk factors for heart failure: 
a population-based case-control study. Am J Med. 2009;122(11):1023–8.

	19.	 He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors 
for congestive heart failure in US men and women: NHANES I epidemio‑
logic follow-up study. Arch Intern Med. 2001;161(7):996–1002.

	20.	 Dhingra R, Vasan RS. Diabetes and the risk of heart failure. Heart Fail Clin. 
2012;8(1):125–33.

	21.	 Kohane IS. Using electronic health records to drive discovery in disease 
genomics. Nat Rev Genet. 2011;12(6):417.

	22.	 Blouin R, Hall M, Saydah S. Using administrative databases to identify 
cases of chronic kidney disease: a systematic review. Emerg Health 
Threats J. 2011;4(1):7175. https://​doi.​org/​10.​3402/​ehtj.​v4i0.​7175.

	23.	 Aggarwal CC. Neural networks and deep learning. Springer. 
2018;10:978–83.

	24.	 Štrumbelj E, Kononenko I. Explaining prediction models and individual 
predictions with feature contributions. Knowl Inf Syst. 2014;41(3):647–65.

	25.	 Shao Y, Cheng Y, Shah RU, Weir CR, Bray BE, Zeng-Treitler Q. Shedding 
light on the black box: explaining deep neural network prediction of 
clinical outcomes. J Med Syst. 2021;45(1):1–9.

	26.	 Achen CH. Interpreting and using regression. California: Sage; 1982.
	27.	 Goldstein A, Kapelner A, Bleich J, Pitkin E. Peeking inside the black box: 

Visualizing statistical learning with plots of individual conditional expec‑
tation. J Comput Graph Stat. 2015;24(1):44–65.

	28.	 Shapley LS. A value for n-person games. In: Kuhn HW, Tucker AW, editors. 
Contributions to the theory of game. Princeton: Princeton University 
Press; 1953. p. 307–17.

	29.	 Ribeiro MT, Singh S, Guestrin C. “Why should i trust you?” Explaining the 
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD 
international conference on knowledge discovery and data mining. 2016. 
pp. 1135–44.

	30.	 Toloşi L, Lengauer T. Classification with correlated features: unreliability 
of feature ranking and solutions. Bioinformatics. 2011;27(14):1986–94. 
https://​doi.​org/​10.​1093/​bioin​forma​tics/​btr300.

	31.	 Ho K, Pinsky JL, Kannel WB, Levy D. The epidemiology of heart failure: the 
Framingham Study. J Am Coll Cardiol. 1993;22(4):A6-13.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1161/HHF.0b013e318291329a
https://doi.org/10.1161/HHF.0b013e318291329a
https://doi.org/10.3402/ehtj.v4i0.7175
https://doi.org/10.1093/bioinformatics/btr300

	A model-agnostic approach for understanding heart failure risk factors
	Abstract 
	Objective: 
	Results: 

	Introduction
	Main text
	Methods
	Data procurement and preparation
	Model building
	Effect score

	Results and discussion
	Summary and conclusion

	Limitations
	Acknowledgements
	References




