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Abstract 

Objective:  Breast cancer (BC) is the most significant and lethal type of cancer in women. Although there are many 
newly develop chemotherapy drugs for patients with BC treating at various stages, drug resistance is the most impor‑
tant obstacle in their effectiveness for BC treatment. On the other hand, microRNAs are considered key regulators of 
genes involved in carcinogenesis and chemoresistance in cancers. The purpose of this study was to evaluate the role 
of miR-152-3p and miR-185 in intrinsic chemoresistance and proliferation of BC. In addition, the potential role of these 
miRNAs during chemoresistance was evaluated through possible signaling pathways.

Results:  Here, miR-152-3p was significantly downregulated in tumor tissues compared to the corresponding margin 
tissues in patients with BC (p-value ≥ 0.04407 and fold change = − 2.0552). In contrast, no statistically significant dif‑
ference was observed in the miR-185 expression between the two groups. Furthermore, no significant correlation was 
found between the expression of these two miRNAs and subfactors, including cancer family history, abortion, and 
age. Downregulation of miR-152-3p could be considered a promising regulator of BC chemoresistance.
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Introduction
Breast cancer (BC) is the most common malignancy 
among women worldwide and the main cause of can-
cer-related mortality [1–3]. According to the world 
health organization (WHO) reports, the incidence rates 
are approximately 1.7 million new cases and more than 
520,000 annual deaths [4].

During the past few decades, new treatment 
approaches for BC have significantly developed, which 

not only decreased the mortality rate but also improved 
patients’ quality of life [5–7]. Recent studies revealed 
several intricate mechanisms that are involved in intrin-
sic and acquired chemoresistance [8–10]. There are two 
forms of drug resistance in cancer: intrinsic resistance 
and acquired resistance. Intrinsic resistance refers to 
resistance prior to prescribing the drug, and this is due 
to the innate ability of cancer cells to survive in drug-
related clinical concentrations. Poor initial response 
to treatment indicates that a patient has intrinsic drug 
resistance. According to Verheul and Pinedo, more than 
50% of all cancer patients are resistant to chemother-
apy before starting treatment (intrinsic resistance), and 
other patients also resist during treatment (acquired 
resistance) [11]. Intrinsic and acquired resistance to 
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chemotherapeutic agents is considered the main obstacle 
to successful treatment in patients with BC [12]. Thus, 
investigation of the molecular mechanisms of drug resist-
ance in BC may help reach better-targeted treatment by 
significantly improving therapeutic outcomes and prog-
nosis for patients with chemo-resistant BC.

Increasing evidence shows that aberrant activation of 
the phosphatidylinositol-3-kinase (PI3K)/AKT signal-
ing pathway is common in various types of neoplasms. 
Furthermore, PTEN plays a negative regulatory role in 
the PI3K/AKT signaling. It is involved in many impor-
tant processes such as cell growth and apoptosis and 
drug resistance/sensitivity. Thus, targeting PI3K/AKT 
and its downstream pathways may provide new hope for 
therapeutic interventions of cancers [13–16]. MicroR-
NAs (miRNAs) are a family of noncoding-RNAs, playing 
a crucial role in post-transcriptionally gene expression 
modulation [17]. Recently, it has been determined that 
miRNAs can play key roles during cancer development 
and resistance to chemotherapy by acting as oncogenes 
or tumor suppressors [18–20].

A bulk of evidence indicated that both miR-152-3p 
and miR-185 as tumor suppressors and induced progres-
sion of multidrug resistance in different human tumors, 
including osteosarcoma [21], epithelial ovarian cancer 
[22], colorectal [23], liver cancer stem cells[24], NSCLC 
cells [25, 26], gastric [27], melanoma [28], nasopharyn-
geal carcinoma [29], and BC [26]. Hence, the association 
of miR-152-3p and miR-185 expression levels with chem-
oresistance could help better understanding the molec-
ular and biological processes involved in response to 
chemotherapy in various types of cancers, especially BC.

In the current study, the expression level of miR-152-3p 
and miR-185 was evaluated in tumor and margin tissues 
of patients with BC. Moreover, in combination with bio-
informatics analysis, the potential role of these miRNAs 
during chemoresistance was evaluated through possible 
signaling pathways.

Main text
Material and methods
Tissue specimens
Two hundred tumor tissues and corresponding normal 
margin of tumor tissues were collected from patients 
with BC from 2018 to 2019 who underwent surgery at 
Noor Nejat Hospital, Tabriz, Iran. The collected tissues 
were dissected by a pathologist for diagnosing BC foci 
as well as margin tissues. After chemotherapy courses, it 
was determined- by the oncologist- that eighty tumor tis-
sues have shown initial resistance to chemotherapy. This 
study was approved by the Ethics Committee of Clinical 
Research of Tabriz University of Medical Sciences (Ethi-
cal code: IR.TBZMED.REC.1397.1048). Demographic 

and clinical characteristics were collected from the 
patients’ records (Additional file  1: 1). The specimens 
were obtained from mastectomy immediately frozen and 
stored at − 80 °C before RNA isolation.

RNA isolation
Tissue samples were cut in 20  μm-thick sections then 
were homogenized in liquid nitrogen. Each of the sam-
ples was directly immersed in TRIzol reagent (GeneAll, 
South Korea). The purity of extracted total RNAs was 
evaluated by the NanoDrop spectrometer (Thermo Sci-
entific, USA) and gel electrophoresis. Finally, isolated 
RNAs were eluted in 30  μL of RNase-free water and 
stored at − 80 °C until use.

cDNA synthesis and Real‑time PCR
Complementary DNA (cDNA) was synthesized using 
reverse-transcriptase enzyme (Thermo Fisher, US), 
buffer (Thermo Fisher, US), dNTP, and miRNA- specific 
stem-loop-primers (Sinacolon Co. Iran, Tehran) for miR-
185-5p and miR-152-3p. The U6 snRNA was also con-
sidered the reference gene. This mix of cDNA synthesis 
was carried out by BIO-RAD-Gradient thermocycler 
PCR (Germany) at the temperature program of 30  min 
at 16  °C, 30 min at 42  °C and the last step to inactivate 
the enzyme the reaction was incubated at 5 min at 75 °C. 
Ampliqon SYBR® Green master mix (Denmark) and 
miR-185-5p, miR-152-5p, and U6 specific forward prim-
ers and common reverse primers were used for quanti-
tative Real-time PCR (qRT-PCR). All qPCR reactions 
were performed in triplicate. Real-time-PCR was done by 
LightCycler® 96 Real-time PCR Cycler (Roche) system, in 
two steps as follows: for miR-185-5p: 10 min at 94 °C, 40 
cycles of 15 s at 94 °C and 30 s at 54 °C. For miR-152-5p: 
10  min at 94  °C, 40 cycles of 15  s at 94  °C, and 30  s at 
60  °C. Then, for RNU6 amplification:10  min at 94  °C, 
40 cycles in 15 s at 94 °C and 20 s at 56 °C. The relative 
expression levels of miRNAs were calculated using the 
2−ΔΔCt method relative to U6. The results were shown by 
LightCycler® 96 v1.1.0 Software. The primer sequences 
are shown in Table 1.

Statistical analysis
Data analysis
Shapiro–Wilk test was performed to assess the normal-
ity of data. Next, the gene expression differences were 
compared between tumor tissues and margins using 
paired t-test and delta-CTs. Two-sample paired t-test 
was performed to compare the miRNA expression levels 
with subsets of the study, including cancer family history, 
abortion history, and age. The gene expression levels in 
subsets of the study, including abortion history, age, and 
cancer family were compared. A t-test for the logarithm2 
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of fold changes was applied to compare gene expres-
sion levels among subsets of the study. Statistical analy-
ses were done by R software version 0.5.1, and P-value 
of ≤ 0.05 was considered statistically significant. The 
results were presented as mean ± standard error of mean 
(SEM).

In silico analysis of miR‑152‑3p targets and related molecular 
signaling pathways
To validate targetome of miR-152-3p, miRTarBase 7.0 
[29] database was applied. Further, in silico analysis was 
employed to achieve the vision of biological procedures 
that are controlled by miR-152. All target genes of miR-
152-3p experimentally verified were extracted from the 
miRTarBase 7.0 database. Finally, to enrich related signal-
ing pathways to miR-152-3p dysregulation, target genes 
were investigated in the WEB-based Gene Set Analysis 
Toolkit (webgestalt) database (http://​www.​webge​stalt.​
org/), and the Over-Representation enrichment (ORA) 
was selected and pathways were enriched based on 
Reactome database. The reference gene list was set to 
"genome-protein-coding," and the adjustment p-value 
was set as Benjamini-Hochberg. Other parameters were 
set as defaults.

Results
MiR‑152‑5p and miR‑185‑5p expression levels
Paired T-test results revealed that the miR-152-3p 
expression level decreased in tumor tissues compared to 
the corresponding margins (p-value ≥ 0.04407 and fold 
change = -2.0552) (Fig.  1A). On the contrary to miR-
152-3p, no statistically significant change was observed 
in the miR-185-5p expression levels between tumor tis-
sues and the corresponding margins (p-value ≤ 0.1017 
and fold change = -1.6621) (Fig. 1B).

Subgroup analysis
The results of two-sample t-test demonstrated that firstly, 
there was no significant different expression levels of 

miR-152-5p and miR-185-5p among patients with and 
without abortion history in the past (p-value ≤ 0.4864, 
fold change = 0.70113) (Additional file  1: 2.a), 
(p-value ≤ 0.6572, fold change = 0.44646) (Additional 
file 1: 3.a). Moreover, there was no significant difference 
in the expression level of miR-152-5p (p-value ≤ 0.2623) 
(fold change = -1.1361) (Additional file  1: 2.b) and miR-
185-5p (p-value ≤ 0.9613, fold change = 0.048805) 
between patients ≤ 50 and > 50 ages, respectively (Addi-
tional file 1: 3.b). However, there was no significant dif-
ference in the expression level of miR-152-5p between 
patients with and without cancer family history (Can-
cer family history means that a close relative has BC) 
(p-value ≤ 0.09579, fold change = -1.6964) (Additional 
file  1: 2.c). The miR-185-5p expression level was sig-
nificantly different between the patients with and 
without cancer family history (p-value ≤ 0.02586, fold 
change = -2.293) (Additional file 1: 3.c).

In silico analysis
The 158 experimentally validated gene targets of miR-
152-3p were obtained by the miRTarBase 7.0 database. 
The miRNA-gene interaction was depicted by Cytoscape 
V 3.7.1 (Additional file 1: 4). ORA database revealed that 
ten categories of the biological processes were enriched 
among miR-152-3p target genes. All 10 of these biologi-
cal processes are shown in (Additional file 1: 5). Moreo-
ver, the ORA analysis discovered ten significant signaling 
pathways in which the targets of miR-152 are involved 
(Table 2).

Discussion
Therapeutic resistance to chemotherapy is considered 
the most important global health challenge for patients 
with cancers, especially patients with BC [6, 30, 31]. 
Recently, numerous experimental and clinical studies 
have shown that miRNAs participate in several cellu-
lar events, particularly in resistance/sensitivity to drugs 
and cancer progression [32, 33]. Therefore, identifying 

Table 1  Stem-loop primer (cDNA synthesis) and real-time primer sequences

*SLP stem-loop

Micro RNAs Primer sequences

miR-185-5p SLP* 5’-GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACT​CAG​GA-3’

miR-152-3p SLP 5’-GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACC​CAA​GTT-3’

U6 SLP 5’-GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACA​AAA​ATAT-3’

miR-185-5p Forward 5’-GGA​GAG​AAA​GGC​AGT​TCC​TGAC-3’

miR-152-3p Forward 5’-CCC​TCA​GTG​CAT​GAC​AGA​ACTTG-3’

Universal reverse primer for miR-152-3p and miR-185-5p 5’-GTG​CAG​GGT​CCG​AGGT-3’

U6 Forward 5’-GCT​TCG​GCA​GCA​CAT​ATA​CTA​AAA​T-3’

U6 Reverse 5’-CGC​TTC​ACG​AAT​TTG​CGT​GTCAT-3’

http://www.webgestalt.org/
http://www.webgestalt.org/
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drug resistance-specific miRNAs and their target genes is 
critical for understanding their role in BC chemotherapy. 
Further, they could be potential candidates for therapeu-
tic intervention [34, 35].

In the current study, based on previous studies and 
in silico analysis, it was predicted that miR-152-3p and 
miR-185 could be involved in BC chemoresistance. For 

this reason, we evaluate and compare the expression of 
the aforementioned miRNAs in tumor tissues relative to 
the margins from BC-resistant patients to chemotherapy. 
As mentioned in the results, we found that the expression 
level of miR-152-3p was significantly downregulated in 
BC tumor tissues compared to margin tissues. Accord-
ing to the previous studies, concerning chemoresistance 

Fig. 1  The expression of miRNAs in tumor tissues and corresponding margin tissues. A The miR-152-3p expression in tumor tissues and 
corresponding margins. B The miR-185-5p expression in tumor tissues and corresponding margins. In both figures, ΔCTs were used to show the 
expression level normalized to U6 snRNA in tumor and normal tissues

Table 2  Pathways that are enriched among target genes of miRNA-152-3p

E number of expected gene in the category, FDR false discovery rate, O number of observed target genes in the category, R fold enrichment

Gene set Pathway name FDR P-value Fold enrichment detail

hsa05215 Prostate cancer 5.9238E−6 2.8840E−9 O = 11; E = 0.96; R = 11.37

R-HSA-8943723 Regulation of PTEN mRNA translation 8.1607E−6 1.1011E−8 O = 5; E = 0.08; R = 55.72

hsa04151 PI3K-Akt signaling pathway 8.1607E−6 1.1919E−8 O = 18; E = 3.52; R = 5.10

hsa05206 MicroRNAs in cancer 1.5061E−5 2.9330E−8 O = 12; E = 1.49; R = 8.02

hsa04550 Signaling pathways regulating pluripotency of stem cells 5.2459E−5 1.2770E−7 O = 11; E = 1.38; R = 7.93

hsa05224 Breast cancer 6.8102E−5 2.2617E−7 O = 11; E = 1.46; R = 7.50

hsa05165 Human papillomavirus infection 6.8102E−5 2.3209E−7 O = 16; E = 3.37; R = 4.73

R-HSA-426496 Post-transcriptional silencing by small RNAs 8.2303E−5 3.2056E−7 O = 4; E = 0.06; R = 57.32

hsa05214 Glioma 1.0421E−4 4.8141E−7 O = 8; E = 0.70; R = 11.30

R-HSA-8934593 Regulation of RUNX1 Expression and Activity 1.0421E−4 5.0736E−7 O = 5; E = 0.16; R = 29.50
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and proliferation in various types of cancers, it has been 
shown that there is a significant relationship between 
miR-152-3p with chemoresistance and proliferation. For 
example, A Maimaitiming et  al. proved the tumor-sup-
pressive role of miR-152 by significantly downregulation 
in BC tissues relative to paired adjacent noncancerous 
tissues. Besides, he found that miR-152 overexpression 
significantly inhibited proliferation, migration, and inva-
sion of BC cells [36].

Wen, Y.-Y et al. reported that miR-152 downregulation 
is associated with BC development. Moreover, induc-
tion of miR-152 could sensitize BC cells to the paclitaxel 
therapy by targeting β-catenin and PKM2 repression 
[37]. Shuke Ge et al. found that miR-152 plays a tumor-
suppressive role in BC through negative regulation of 
PIK3CA expression and AKT and RPS6 inhibition, which 
leads to suppression of BC cell proliferation [38].

Moreover, Xu Chen et  al. [26] found that the miR-
148/152 family attenuates Adriamycin resistance of BC 
cells and tissues by downregulating the SPIN1, which 
is a protein highly expressed in human cancers, espe-
cially BC. [39, 40]. Therefore, downregulation of miR-
152-3p in tumors relative to adjacent tissues may result 
in an elevated expression level of SPIN1 and resistance to 
chemotherapy.

According to bioinformatics results, among important 
molecular pathways enriched by the webgestalt database, 
PI3K-Akt signaling pathway and regulation of PTEN 
mRNA translation are important enriched signaling path-
ways in which the targets of miR-152-3p are involved, 
and there may be a relationship between miR-152-3p 
expression and BC chemoresistance. The PI3K-Akt sign-
aling is an intracellular signaling pathway involved in 
pivotal processes such as proliferation, cell survival, and 
angiogenesis [41]. PTEN acts as a tumor-suppressor 
gene and negatively regulates PI3K-Akt signaling [42]. 
In the upstream of Akt, PTEN blocks the formation of 
phosphatidylinositol-3, 4, 5-trisphosphate (PIP3) from 
phosphatidylinositol-4, 5-bisphosphate (PIP2), thereby 
inhibiting PI3 kinase (PI3K) activity. Several human 
tumor cell lines have been reported to evade apoptosis 
through the excessive activation of the PI3K/Akt path-
way, which is the result of a mutation or downregulation 
of PTEN [43]. Additionally, it has been demonstrated 
that constitutive activation of PI3K-Akt signaling causes 
cell resistance to many chemotherapy agents by promot-
ing proliferation and inhibiting apoptosis of cancer cells 
[44]. M Alam et al. showed the significant loss of PTEN 
expression in 26.4% BC cases, suggesting loss of PTEN 
expression could play a key role in breast carcinogenesis, 
due to lack of control of the signaling pathways such as 
likely PI3K-Akt signaling that mediates cellular processes 
like apoptosis and migration [45].

Finally, demographic characteristics of the current 
study showed that no significant difference was seen 
between the miR-152 and miR-185 expression levels. 
Some demographic factors such as cancer, family history, 
or abortion history need further studies to be clarified.

Conclusion
The findings of the current study suggested miR-152-3p 
as a potential biomarker in BC chemoresistance patients. 
Besides, the PI3K/Akt signaling was predicted as a pos-
sible key modulator during BC chemoresistance. Further 
studies are needed to elucidate these findings.

Limitations
The small sample size was considered the limitation of 
this study. Also, applying only one miRNA-target data-
base could be mentioned as another limitation.
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