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Fixed point results for weak contractions 
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Abstract 

Objectives:  We explore the existence of a fixed point as well as the uniqueness of a mapping in an ordered b-metric 
space using a generalized (ψ̌ , η̂)-weak contraction. In addition, some results are posed on a coincidence point and a 
coupled coincidence point of two mappings under the same contraction condition. These findings generalize and 
build on a few recent studies in the literature. At the end, we provided some examples to back up our findings.

Result:  In partially ordered b-metric spaces, it is discussed how to obtain a fixed point and its uniqueness of a map-
ping, and also investigated the existence of a coincidence point and a coupled coincidence point for two mappings 
that satisfying generalized weak contraction conditions.
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Introduction
In a wide range of pure and applied mathematics prob-
lems, fixed points of mappings that satisfy contrac-
tive conditions in extended metric spaces are extremely 
useful. First, Ran and Reuings [32] described the exist-
ence of fixed points in this direction for certain maps in 
ordered metric space and exhibited matrix linear equa-
tions applications. Following that, Nieto et  al. [28, 29] 
expanded the result of [32] to nondecreasing mappings 
and used their findings to obtain differential equations 
solutions. Agarwal et al. [3] and O’Regan et al. [30] exam-
ined the influence of generalized contractions in ordered 
spaces at the same time. Bhaskar and Lakshmikantham 
[11] first developed coupled fixed point theory for some 
maps, then used the results to find a unique solution 
to periodic boundary value problems. Following that, 

Lakshmikantham and Ćirić [22], which were the exten-
sions of [11] involving monotone property to a function 
in the space, pioneered the idea of coupled coincidence, 
common fixed point results. [19, 25, 34–37] provide 
additional information on coupled fixed point effects in 
various spaces under various contractive conditions.

A b-metric space is one of several generalizations of a 
standard metric space proposed by Bakhtin in his work 
[9], and widely used by Czerwik in his work [14, 15]. Fol-
lowing that, a lot of progress was made in acquiring the 
results of fixed points to single valued as well as multi-
valued operators in the space, as evidenced by [1, 2, 4–8, 
10, 13, 16–18, 20, 21, 23, 24, 26, 27, 31, 38–41].

We demonstrate some fixed points results for map-
pings in ordered b-metric space that satisfy a generalized 
weak contraction in this paper. The results from [10, 11, 
19, 22, 33] are expanded here as well as some examples 
noted to support the findings at the end of our work.

Preliminaries
The following definitions are subsequently used in our 
study.
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Definition 2.1  [15] A b-metric is a mapping 
ð : E × E → [0,+∞) that satisfies the properties below 
for all ε,℘, ζ in E and some s ≥ 1 , 

(a)	 ð(ε,℘) = 0 if and if ε = ℘,
(b)	 ð(ε,℘) = ð(℘, ε),
(c)	 ð(ε,℘) ≤ s(ð(ε, ζ )+ ð(ζ ,℘)).

A b-metric space is specified as (E , ð, s).

Example 2.2  The space Lq[0, 1] , where 0 < q < 1 
of all real functions f (t), t ∈ [0, 1] such that 
∫ 1
0 |f (t)|qdt < ∞ is a b-metric space if we take 

ð(ε,℘) =
∫ 1
0 (|f (t)− g(t)|qdt)

1
q , for all ε,℘ ∈ Lq[0, 1].

Note 2.3  Every metric space is a b-metric space with 
s = 1 , but in general a b-metric space need not necessar-
ily be a metric space, as in below example 2.4 is b-metric 
space but not a metric space. Thus, the class of b-metric 
spaces is larger than the class of metric spaces.

Example 2.4  Let E = R and define the mapping 
ð : E × E → R+ by ð(ε,℘) = |ε − ℘|2 , for all ε,℘ ∈ E . 
Then (E , ð) is a b-metric space with coefficient s = 2.

The generalization of the above Example 2.4 is as 
follows:

Example 2.5  Let (E , d) be a metric space and q ≥ 1 be 
a given real number. Then ð(ε,℘) = [d(ε,℘)]q is a b-met-
ric on E with parameter s ≤ 2q−1.

Definition 2.6  [10, 15] In a b-metric space, 

(1)	 if ð(εn, ε) → 0 as n → +∞ then {εn} is said to be 
convergent to ε.

(2)	 if ð(εn, εm) → 0 as n,m → +∞ then {εn} is a 
Cauchy sequence.

(3)	 if (E , ð, s) is a complete b-metric space then very 
Cauchy sequence is convergent.

Definition 2.7  [15, 33] If E is a partial ordered set with 
respect to an ordered relation � and ð is a metric on it, 
then (E , ð,�) is a partially ordered metric space. (E , ð,�) 
is complete partially ordered b-metric space, despite the 
fact that ð is complete.

Definition 2.8  [33] Let h : E → E be a mapping. If 
h (ε) � h (℘) for all ε,℘ ∈ E with ε � ℘ , then h is called 
monotone nondecreasing mapping.

Definition 2.9  [12] Let h ,I : A→ A be two map-
pings, and A  = ∅ ⊆ E . If h ε = Iε = ε (h ε = Iε) for 
ε ∈ A , then ε is called a common fixed point (coinci-
dence point) of h and I.

Definition 2.10  [12] If h Iε = Ih ε for all ε ∈ A , then 
h and I are commuting.

Definition 2.11  [12, 33] The two self mappings h and I 
are known to be compatible, if lim

n→+∞
d(Ih εn, h Iεn) = 0 

for every sequence {εn} in E such that 
lim

n→+∞
h εn = lim

n→+∞
Iεn = µ, for some µ ∈ A.

Definition 2.12  [12, 33] If h ε = Iε for some ε ∈ A , 
then h Iε = Ih ε , the mappings h and I are called 
weakly compatible.

Definition 2.13  [33] If h ε � h ℘ implies Iε � I℘ for 
each ε,℘ ∈ E , then the mapping I is called monotone h
-nondecreasing.

Definition 2.14  [11] Let I : E × E → E and 
h : E → E are two mappings, 

(a)	 a point (ε,℘) ∈ E × E is coupled coincidence point 
of I and h , if I(ε,℘) = h ε and I(℘, ε) = h ℘ . In 
particular, if h is an identity mapping, then (ε,℘) is a 
coupled fixed point of I.

(b)	 a point ε ∈ E is a common fixed point of I and h , if 
I(ε, ε) = h ε = ε.

(c)	 if I(h ε, h ℘) = h (Iε,I℘) for all ε,℘ ∈ E , then I 
and h are commuting each other.

(d)	 If every two elements of A⊆ E are comparable, 
then the set A is called a well ordered set.

Definition 2.15  A self mapping ψ̌ on [0,+∞) that 
meets the conditions below is known as an altering dis-
tance function: 

(a)	 ψ̌ is a non-decreasing and continuous function,
(b)	 ψ̌(ℓ) = 0 if and only if ℓ = 0.

As seen above, the symbol �̂ represents the set of all 
altering distance functions.
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Similarly, �̂ : {η̂|η̂ is a lower semi-continuous

self mapping on [0,+∞) and, η̂(ℓ) = 0 if and only if ℓ = 0}.
The presented lemmas under here are frequently used 

in our main results.

Lemma 2.16  [27] Let h : E → E be a mapping, and 
E  = ∅ . Then M⊆ E occurs, resulting in h M= h E , where 
h : M→ E is one-to-one.

Lemma 2.17  [4] Let {εn} and {℘n} be two sequences and 
b-convergent to ε and ℘ in a b-metric space (E , ð, s,�) , 
where s > 1 . Then

In particular, if ε = ℘ , then lim
n→+∞

ð(εn,℘n) = 0 . In addi-
tion, for every τ ∈ E , we get

1

s2
ð(ε,℘) ≤ lim

n→+∞
inf ð(εn,℘n)

≤ lim
n→+∞

supð(εn,℘n) ≤ s2ð(ε,℘).

1

s
ð(ε, τ ) ≤ lim

n→+∞
inf ð(εn, τ ) ≤ lim

n→+∞
sup ð(εn, τ ) ≤ sd(ε, τ ).

{εn} ⊂ E by εn+1 = Iεn for all n ≥ 0 . However, we can 
deduce the following as I is nondecreasing,

If εn0 = εn0+1 for n0 ∈ N , then εn0 is a fixed point of I 
from (3). Otherwise, for all n ≥ 1 , εn  = εn+1 . For n ≥ 1 , 
let Dn = ð(εn+1, εn) . We know that for every n ≥ 1 , 
εn−1 ≺ εn and, then the equation (1) becomes

From (4), we get

where

(3)
ε0 ≺ Iε0 = ε1 � Iε1 = ε2 � ... � Iεn−1

= εn � Iεn = εn+1 � ..... .

(4)

ψ̌(Dn) = ψ̌(ð(εn, εn+1)) = ψ̌(ð(Iεn−1,Iεn))

≤ ψ̌(sð(Iεn−1,Iεn))

≤ ψ̌(P(εn−1, εn))− η̂(P(εn−1, εn)).

(5)ð(εn, εn+1) = ð(Iεn−1,Iεn) ≤
1

s
P(εn−1, εn),

Main results
We start this section with the following fixed point theo-
rem in an ordered b-metric space.

Theorem 3.1  Suppose (E , ð, s,�) is a complete partially 
ordered b-metric space with s > 1 . A mapping I : E → E 
is continuous and nondecreasing with respect to � . If ε0 ∈ E 
is such that ε0 � Iε0 and the following contraction condi-
tion is fulfilled, then I has a fixed point in E.

for ψ̌ ∈ �̂, η̂ ∈ �̂ and for any ε,℘ ∈ E such that ε � ℘ 
and where

Proof  For some ε0 ∈ E with Iε0 = ε0 , then the result is 
trivial. Assuming that ε0 ≺ Iε0 , we describe a sequence 

(1)ψ̌(sð(Iε,I℘)) ≤ ψ̌(P(ε,℘))− η̂(P(ε,℘)),

(2)P(ε,℘) = max

{

ð(℘,I℘)
[

1+ ð(ε,Iε)
]

1+ ð(ε,℘)
,
ð(ε,I℘)+ ð(℘,Iε)

2s
, ð(ε,Iε), ð(℘,I℘), ð(ε,℘)

}

.

(6)P (εn−1, εn) = max

{

ð(εn,I εn)
[

1+ ð(εn−1,I εn−1)
]

1+ ð(εn−1, εn)
,
ð(εn−1,I εn)+ ð(εn,I εn−1)

2s
, ð(εn−1,I εn−1),ð(εn,I εn),ð(εn−1, εn)

}

� max

{

ð(εn, εn+1),
ð(εn−1, εn)+ ð(εn, εn+1)

2
,ð(εn−1, εn)

}

� max{Dn,Dn−1}.

If max{Dn,Dn−1} = Dn for certain n ≥ 1 , equation (5) is 
then accompanied by

this is a contradiction. Thus, max{Dn,Dn−1} = Dn−1 for 
n ≥ 1 . Hence, equation (5) becomes

Since 1
s

∈ (0, 1) , then {εn} is a Cauchy sequence from 
[1, 6, 8, 18]. Also, the completeness of E gives that 
εn → µ ∈ E.

We may also deduce the following from the continuity of 
I,

ð(εn, εn+1) ≤
1

s
ð(εn, εn+1),

ð(εn, εn+1) ≤
1

s
ð(εn, εn−1).
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As a result, I in E has a fixed point µ .�  �

The continuity assumption on I is extracted from 
Theorem 3.1 and used to derive the following theorem.

Theorem 3.2  In Theorem 3.1, if E satisfies below condi-
tion, then I has a fixed point.

Proof  We have an increasing sequence {εn} ⊆ E that 
eventually converges to some σ ∈ E as a result of Theo-
rem  3.1. But by the hypotheses for all n, εn � σ , which 
means that σ = sup εn.

We can now assert that σ is a fixed point of I . Assume 
that Iσ  = σ . Let

(7)
Iµ = I( lim

n→+∞
εn) = lim

n→+∞
Iεn = lim

n→+∞
εn+1 = µ.

(8)

If a non-decreasing sequence {εn}

⊆ E and εn → σ then εn ≤ σ ,

for each n ∈ N, i.e., σ = sup εn.

In the above theorems, the fixed point is unique if E 
meets the following condition.

Theorem  3.3  If E assumes the condition (13) in Theo-
rem 3.1 & 3.2, then I has a unique fixed point in E.

Proof  Theorems 3.1 & 3.2 show that the set of fixed 
points of I is nonempty. Assume ε∗ �= ℘∗ are fixed 
points of I to ensure uniqueness. Following that,

where

(13)
There exists a σ in E that is comparable to

ε and ℘, for each ε,℘ ∈ E .

(14)

ψ̌(ð(Iε∗,I℘∗)) ≤ ψ̌(sð(Iε∗,I℘∗))

≤ ψ̌(P(ε∗,℘∗))− η̂(P(ε∗,℘∗)),

then taking limit as n → +∞ in the equation (9) and 
making use of lim

n→+∞
εn = σ , we get

Since, εn � σ for each n, then we obtain the following 
from equations (1) and (9)

Take limit as n → +∞ in (11) and from equation (10) as 
well as the properties of ψ̌ , η̂ , we have

This is a contradiction to Iσ  = σ . Hence, Iσ = σ .�  �

(9)P (εn, σ) = max

{

ð(σ ,I σ)
[

1+ ð(εn,I εn)
]

1+ ð(εn, σ)
,
ð(εn,I σ)+ ð(σ ,I εn)

2s
, ð(εn,I εn),ð(σ ,I σ), ð(εn, σ)

}

(10)
lim

n→+∞
P(εn, σ) = max{ð(σ ,Iσ), 0} = ð(σ ,Iσ).

(11)

ψ̌(ð(εn+1,Iσ)) = ψ̌(ð(Iεn,Iσ)) ≤ ψ̌(sð(Iεn,Iσ))

≤ ψ̌(P(εn, σ))− η̂(P(εn, σ)).

(12)
ψ̌(ð(σ ,Iσ)) ≤ ψ̌(ð(σ ,Iσ))− η̂(ð(σ ,Iσ)) < ψ̌(ð(σ ,Iσ)).

(15)P (ε∗,℘∗) = max

{

ð(℘∗,I ℘∗)
[

1+ ð(ε∗,I ε∗)
]

1+ ð(ε∗,℘∗)
,
ð(ε∗,I ℘∗)+ ð(℘∗,I ε∗)

2s
, ð(ε∗,I ε∗),ð(℘∗

,I ℘∗),ð(ε∗,℘∗)

}

.

Therefore from equations (14) and (15), we have

this contradicts to ε∗ �= ℘∗ . Hence, ε∗ = ℘∗ . � �

Now, we have the below corollary from Theorems 3.1 
to 3.3.

Corollary 3.4  Let (E , ð,�) be a partially ordered 
b-metric space. Suppose the mappings I, h : E → E are 
continuous such that 

(C1).	�

(16)

ψ̌(ð(ε∗,℘∗)) = ψ̌(ð(Iε∗,I℘∗)) ≤ ψ̌(ð(ε∗,℘∗))

− η̂(ð(ε∗,℘∗)) < ψ̌(ð(ε∗,℘∗)),
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 for every ε,℘ ∈ E with h ε � h ℘ , s > 1 , ψ̌ ∈ �̂ , η̂ ∈ �̂ 
and, where 

(C2).	� IE ⊂ h E and h E ⊆ E is complete,
(C3).	� I is monotone h-non-decreasing and
(C4).	� I and h are compatible.

 If for some ε0 ∈ E such that h ε0 � Iε0 , then a pair of 
mappings (I, h ) has a coincidence point in E.

Proof  By Lemma 2.16, there exists M⊂ E such that 
h M= h E and h : M→ E is one-to-one. Now define a 
map k : h M→ h M by k (h ε) = Iε , ε ∈ M . Since h is 
one-to-one on M , k is well defined. Then, h M= h E is 
complete and then (17) becomes

for every ε,℘ ∈ E with h ε � h ℘ and, where

Let ε0 ∈ M such that h ε0 � Iε0 = k (h ε0) . Choose 
ε1 ∈ M such that h ε1 = Iε0 = k (h ε0) . By continuing 
this process, we obtain a sequence {h εn} ⊂ h M such 
that h εn+1 = Iεn = k (h εn) for n ≥ 0 . By using the sim-
ilar argument as in the proof of Theorem 3.1, we obtain 
that {h εn} ⊂ h M is a b-Cauchy sequence. Since h M is 
complete, there exists v ∈ h M such that 
lim

n→+∞
h εn = v ∈ h E . Then

From the condition (C4) , we have

Furthermore, the triangular inequality of b-metric, we 
have

(17)ψ̌(sð(Iε,I℘)) ≤ ψ̌(Ph (ε,℘))− η̂(P
h
(ε,℘)),

(18)Ph(ε,℘) = max

{

ð(h℘,I ℘)
[

1+ ð(hε,I ε)
]

1+ ð(hε, h℘)
,
ð(hε,I ℘)+ ð(h℘,I ε)

2s
,ð(hε,I ε),ð(h℘,I ℘),ð(hε, h℘)

}

.

(19)
ψ̌(sð(k (h ε), k (h ℘))) ≤ ψ̌(Ph (ε,℘))− η̂(Ph (ε,℘)),

(20)
Ph(ε,℘) = max

{

ð(h℘, kð(h℘))[1+ ð(hε, kð(hε))]

1+ ð(hε, h℘)
,
ð(hε, kð(h℘))+ ð(h℘, kð(hε))

2s
,

ð(hε, kð(hε)),ð(h℘, kð(h℘)),ð(hε, h℘)
}

.

lim
n→+∞

h εn = lim
n→+∞

Iεn−1 = v .

(21)lim
n→+∞

ð(h (Iεn),I(h εn)) = 0.

(22)

ð(Iv , h v ) ≤ sð(Iv ,I(h εn))+ s
2
ð(I(h εn), h (Iεn))

+ s
2
ð(h (Iεn), h v ).

Taking n → +∞ in (22) and the continuity of I , h and 
(21), we get ð(Iv , h v ) = 0 . That is Iv = h v . There-
fore, v is a coincidence point of I , h.

The following result can get from Corollary 3.4 by 
weakening its hypotheses.

Corollary 3.5  If E satisfies the following condition in 
Corollary 3.4,

then, if h µ � h (h µ) for some coincidence point µ , a 
coincidence point exists for the weakly compatible map-
pings (I, h ) . Moreover, (I, h ) has only one common fixed 

(23)

for very nondecreasing sequence {h εn}

⊆ E such that h εn → h σ , then

h εn ≤ h σ (n ≥ 0), i.e., h σ = sup h εn.

point if and only if the set of common fixed points is well 
ordered. � �

Proof  A pair of mappings (I, h ) has a coincidence 
point, according to Theorem 3.3 and Corollary 3.4.

Next, assume that a pair of mappings (I, h ) is weakly 
compatible. Let v ∈ E be a point with v = Iµ = h µ . 
Then, Iv = I(h µ) = h (Iµ) = h v.

Therefore,
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Thus from equation (17), we get

By the property of η̂ , we get ð(Iµ,Iv ) = 0 implies that 
Iv = h v = v.

Finally, we can deduce from Theorem 3.3 that (I, h ) has 
only one common fixed point if and only if the common 
fixed points of (I, h ) is well ordered. �  �

Remark 3.6  Theorems 3.1 to 3.3 are respectively the 
extension of Theorems 2.1,.2.2 & 2.3 of [27].

Remark 3.7  Corollaries 3.4 & 3.5 are the generaliza-
tions of Corollaries 2.1 & 2.2 of [12] respectively.

Definition 3.8  Consider a partially ordered b-metric 
space, (E , ð,�) . A mapping I : E × E → E is known to 
be a generalized (ψ̌ , η̂)-contractive mapping with regards 
to h : E → E , if

for all ε,℘, ζ , I ∈ E with h ε � h ζ and h ℘ � h I , k > 2 , 
s > 1 , ψ̌ ∈ �̂ , η̂ ∈ �̂ and where

Theorem 3.9  Suppose that (E , ð,�) is a complete par-
tially ordered b-metric space. A mapping I : E × E → E 
satisfies the condition (26) and I , h are continuous, I 
has mixed h-monotone property and also commutes 

(24)Ph (µ, v) = max

{

ð(hv, Iv)[1+ ð(hµ, Iµ)]

1+ ð(hµ, hv)
,
ð(hµ, Iv)+ ð(hv, Iµ)

2s
, ð(hµ, Iµ),ð(hv, Iv),ð(hµ, hv)

}

= max

{

0,
ð(Iµ, Iv)

s
,ð(Iµ, Iv)

}

= ð(Iµ, Iv).

(25)

ψ̌(ð(Iµ,Iv )) ≤ ψ̌(Ph (µ, v ))− η̂(Ph (µ, v ))

≤ ψ̌(ð(Iµ,Iv ))− η̂(ð(Iµ,Iv )).

(26)
ψ̌(skð(I(ε,℘),I(ζ ,I))) ≤ ψ̌(Ph (ε,℘, ζ ,I))− η̂(Ph (ε,℘, ζ ,I)),

Ph(ε,℘, ζ ,ℑ) = max

{

ð(hζ ,I ð(ζ ,ℑ))
[

1+ ð(hε,I ð(ε,℘))
]

1+ ð(hε, hζ )
,
ð(hε,I ð(ζ ,ℑ))+ ð(hζ ,I ð(ε,℘))

2s
,

ð(hε,I ð(ε,℘)),ð(hζ ,I ð(ζ ,ℑ)), ð(hε, hζ )
}

with h . Assume that, if for some (ε0,℘0) ∈ E × E such 
that h ε0 � I(ε0,℘0) , h ℘0 � I(℘0, ε0) and 
I(E × E ) ⊆ h (E ) , then I and h have a coupled coinci-
dence point in E.

Proof  From Theorem  2.2 of [7], there exist two 
sequences {εn} and {℘n} in E such that

In particular, the sequences {h εn} and {h ℘n} 
are non-decreasing and non-increasing in E . Put 
ε = εn,℘ = ℘n, ζ = εn+1, I = ℘n+1 in (26), we get

where

Therefore from (27), we have

Similarly by taking ε = ℘n+1,℘ = εn+1, ζ = εn, I = εn in 
(26), we get

We know that max{ψ̌(l1), ψ̌(l2)} = ψ̌{max{l1, l2}} for 
l1, l2 ∈ [0,+∞) . Then by adding (29) and (30) together 
we get,

h εn+1 = I(εn,℘n), h ℘n+1 = I(℘n, εn), n ≥ 0.

(27)

ψ̌(skð(h εn+1, h εn+2)) = ψ̌(skð(I(εn,℘n),I(εn+1,℘n+1)))

≤ ψ̌(Ph (εn,℘n, εn+1,℘n+1))

− η̂(Ph (εn,℘n, εn+1,℘n+1)),

(28)
Ph (εn,℘n, εn+1,℘n+1) ≤ max{ð(h εn, h εn+1),ð(h εn+1, h εn+2)}.

(29)

ψ̌(skð(h εn+1, h εn+2)) ≤ ψ̌(max{ð(h εn, h εn+1),ð(h εn+1, h εn+2)})

− η̂(max{ð(h εn, h εn+1),ð(h εn+1, h εn+2)}).

(30)ψ̌(skð(h ℘n+1, h ℘n+2)) ≤ ψ̌(max{ð(h ℘n, h ℘n+1),ð(h ℘n+1, h ℘n+2)})

− η̂(max{ð(h ℘n, h ℘n+1),ð(h ℘n+1, h ℘n+2)}).

(31)ψ̌(skŴn) ≤ ψ̌(max{ð(h εn, h εn+1),ð(h εn+1, h εn+2),ð(h ℘n, h ℘n+1),ð(h ℘n+1, h ℘n+2)})

− η̂(max{ð(h εn, h εn+1),ð(h εn+1, h εn+2),ð(h ℘n, h ℘n+1),ð(h ℘n+1, h ℘n+2)}),
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where

Let us denote,

Hence from equations (29)-(32), we obtain

Now to claim that

for n ≥ 1 and � = 1
sk

∈ [0, 1).

Suppose that if κn = Ŵn then from (34), we get skŴn ≤ Ŵn 
this leads to Ŵn = 0 , since s > 1 and thus (35) holds. Sup-
pose κn = max{ð(h εn, h εn+1),ð(h ℘n, h ℘n+1)} , i.e., 
κn = Ŵn−1 then (34) follows (35).

Now from (34), we obtain that Ŵn ≤ �
nδ0 and hence,

which shows that {h εn} and {h ℘n} in E are Cauchy 
sequences by Lemma 3.1 of [20]. Therefore, we can con-
clude from Theorem 2.2 of [5] that, I and h have a coin-
cidence point in E .�  �

Corollary 3.10  Suppose that (E , ð,�) is a complete 
partially ordered b-metric space. A continuous map-
ping I : E × E → E has a mixed monotone property 
and is satisfying the below contraction conditions for all 
ε,℘, ζ , I ∈ E such that ε � ζ and ℘ � I , k > 2 , s > 1 , 
ψ̌ ∈ �̂ and η̂ ∈ �̂ : 

	 (i).	

	 (ii).	

(32)
Ŵn = max{ð(h εn+1, h εn+2),ð(h ℘n+1, h ℘n+2)}.

(33)
κn = max{ð(h εn, h εn+1),ð(h εn+1, h εn+2),

ð(h ℘n, h ℘n+1), ð(h ℘n+1, h ℘n+2)}.

(34)skŴn ≤ κn.

(35)Ŵn ≤ �Ŵn−1,

(36)
ð(h εn+1, h εn+2) ≤ �

nŴ0 and ð(h ℘n+1, h ℘n+2) ≤ �
nŴ0,

ψ̌(skð(I(ε,℘),I(ζ , I))) ≤ ψ̌(Ph (ε,℘, ζ , I))

− η̂(Ph (ε,℘, ζ , I)),

ð(I(ε,℘),I(ζ , I)) ≤
1

sk
Ph (ε,℘, ζ , I)

−
1

sk
η̂(Ph (ε,℘, ζ , I)),

where

If there exists (ε0,℘0) ∈ E × E such that ε0 � I(ε0,℘0) 
and ℘0 � I(℘0, ε0) , then I has a coupled fixed point in 
E.

Theorem  3.11  The unique coupled common fixed 
point for I and h exists in Theorem  3.9, if for every 
(ε,℘), (k , l ) ∈ E × E there exists some (�,ϒ) ∈ E × E 
such that (I(�,ϒ),I(ϒ ,�)) is comparable to 
(I(ε,℘),I(℘, ε)) and to (I(k ,I),I(l , k )).

Proof  The existence of a coupled coincidence point 
for I and h is guaranteed by the Theorem  3.9. Let 
(ε,℘), (k , l ) ∈ E × E are two coupled coincidence 
points of I and h . Now, we assert that h ε = h k and 
h ℘ = h l . By the hypotheses (I(�,ϒ),I(ϒ ,�)) is com-
parable to (I(ε,℘),I(℘, ε)) and to (I(k ,I),I(l , k )) 
for some (�,ϒ) ∈ E × E.

Now, assume the following

Suppose �0 = � and ϒ0 = ϒ then there is a point 
(�1,ϒ1) ∈ E × E such that

As by applying the preceding argument repeatedly, we 
have the sequences {h �n} and {h ϒn} in E such that

Define the sequences in the same way {h εn} , {h ℘n} and, 
{h k n} , {h l n} in E by setting ε0 = ε , ℘0 = ℘ and k 0 = k , 
l 0 = l . Further, we have that

Thus by induction, we get

P(ε,℘, ζ ,ℑ) = max

{

ð(ζ ,I ð(ζ ,ℑ))
[

1+ ð(ε,I ð(ε,℘))
]

1+ ð(ε, ζ )
,
ð(ε,I ð(ζ ,ℑ))+ ð(ζ ,I ð(ε,℘))

2s
,

ð(ε,I ð(ε,℘)),ð(ζ ,I ð(ζ ,ℑ)), ð(ε, ζ )
}

.

(I(ε,℘),I(℘, ε)) ≤ (I(�,ϒ),I(ϒ ,�))

and (I(k , l ),I(l , k )) ≤ (I(�,ϒ),I(ϒ ,�)).

h �1 = I(�0,ϒ0), h ϒ1 = I(ϒ0,�0) (n ≥ 1).

h �n+1 = I(�n,ϒn), h ϒn+1 = I(ϒn,�n) (n ≥ 0).

(37)

h εn → I(ε,℘), h ℘n → I(℘, ε),

h k n → I(k , l ), h l n → I(l , k ) (n ≥ 1).

(38)(h εn, h ℘n) ≤ (h �n, h ϒn) for every n.
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As a consequence of (26), we have

where

Therefore from (39), we have

As by the similar argument, we acquire that

Hence from (40) and (41), we have

Thus the property of ψ̌ implies,

Hence, max{ð(h ε, h �n),ð(h ℘, h ϒn)} is a decreasing 
sequence of positive reals and bounded below and by a 
result, we have

Therefore as n → +∞ in equation (42), we get

from which we get η̂(Ŵ) = 0 , this implies that Ŵ = 0 . 
Therefore,

(39)ψ̌(ð(h ε, h �n+1)) ≤ ψ̌(skð(h ε, h �n+1)) = ψ̌(skð(I(ε,℘),I(�n,ϒn)))

≤ ψ̌(Ph (ε,℘,�n,ϒn))− η̂(Ph (ε,℘,�n,ϒn)),

Ph(ε,℘,�n,ϒn) = max

{

ð(h�n,I ð(�n,ϒn))
[

1+ ð(hε,I ð(ε,℘))
]

1+ ð(hε, h�n)
,
ð(hε,I ð(�n,ϒn))+ ð(h�n,I ð(ε,℘)

2s
,

ð(hε,I ð(ε,℘)), ð(h�n,I ð(�n,ϒn)),ð(hε, h�n)
}

= max

{

0,
ð(hε, h�n)

s
, ð(hε, h�n)

}

= ð(hε, h�n).

(40)
ψ̌(ð(h ε, h �n+1)) ≤ ψ̌(ð(h ε, h �n))− η̂(ð(h ε, h �n)).

(41)
ψ̌(ð(h ℘, h ϒn+1)) ≤ ψ̌(ð(h ℘, h ϒn))− η̂(ð(h ℘, h ϒn)).

(42)
ψ̌(max{ð(h ε, h �n+1),ð(h ℘, h ϒn+1)}) ≤ ψ̌(max{ð(h ε, h �n),ð(h ℘, h ϒn)})

− η̂(max{ð(h ε, h �n),ð(h ℘, h ϒn)})

< ψ̌(max{ð(h ε, h �n),ð(h ℘, h ϒn)}).

max{ð(h ε, h �n+1),ð(h ℘, h ϒn+1)}

< max{ð(h ε, h �n), ð(h ℘, h ϒn)}.

lim
n→+∞

max{ð(h ε, h �n),ð(h ℘, h ϒn)} = Ŵ, Ŵ ≥ 0.

(43)ψ̌(Ŵ) ≤ ψ̌(Ŵ)− η̂(Ŵ),

lim
n→+∞

max{ð(h ε, h �n),ð(h ℘, h ϒn)} = 0.

Hence, we have

From the similar argument as above, we obtain that

Therefore from (44) and (45), we get h ε = h k and 
h ℘ = h I . Since h ε = I(ε,℘) and h ℘ = I(℘, ε) and, 
the commutative property of I and h implies that

(44)
lim

n→+∞
ð(h ε, h �n) = 0 and lim

n→+∞
ð(h ℘, h ϒn) = 0.

(45)
lim

n→+∞
ð(h k , h �n) = 0 and lim

n→+∞
ð(h I, h ϒn) = 0.

If h ε = �∗ and h ℘ = ϒ∗ , then from (46), we get

which exhibits that (�∗,ϒ∗) is a coupled coincidence 
point of I , h . Hence, h (�∗) = h k and h (ϒ∗) = h I 
which in turn gives that h (�) = �∗ and h (ϒ∗) = ϒ∗ . 
Therefore from (47), (�∗,ϒ∗) is a coupled common fixed 
point of I , h.

Let (�∗
1,ϒ

∗
1 ) be another coupled common fixed 

point of I , h . Then, �∗
1 = h �∗

1 = I(�∗
1,ϒ

∗
1 ) and 

ϒ∗
1 = h ϒ∗

1 = I(ϒ∗
1 ,�

∗
1) . But (�∗

1,ϒ
∗
1 ) is a coupled com-

mon fixed point of I and h then, h �∗
1 = h ε = � and 

h ϒ∗
1 = h ℘ = ϒ∗ . Therefore, �∗

1 = h �∗
1 = h � = � 

and ϒ∗
1 = h ϒ∗

1 = h ϒ∗ = ϒ∗ . Hence the uniqueness.�  �

(46)

h (h ε) = h (I(ε,℘)) = I(h ε, h ℘) and h (h ℘)

= h (I(℘, ε)) = I(h ℘, h ε).

(47)h (�) = I(�∗,ϒ∗) and h (ϒ∗) = I(ϒ∗,�∗),
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Theorem  3.12  In Theorem  3.11, if h ε0 � h ℘0 or 
h ε0 � h ℘0 , then a unique common fixed point of I and 
h can be found.

Proof  Assume that (ε,℘) ∈ E is a unique coupled com-
mon fixed point of I and h . Then to demonstrate that 
ε = ℘ . Suppose that h ε0 � h ℘0 , then we get by induction 
that, h εn � h ℘n for n ≥ 0 . From Lemma 2 of [21], we have

a contradiction. Hence, ε = ℘.

The result can also be similar in the case of h ε0 � h ℘0 . 
� �

Remark 3.13  While s = 1 and the result of [19], the 
condition

is equivalent to,

where ψ̌ ∈ �̂ , η̂ ∈ �̂ and ϕ is a continuous self mapping 
on [0,+∞) with ϕ(y) < y for every y > 0 with ϕ(y) = 0 if 
and only if y = 0 . Hence the results found here are gener-
alized and extended the results of [11, 18, 22, 25, 27] and 
several comparable results.

Now depending on the type of a metric, some exam-
ples are shown here under.

Example 3.14  Let E = {e1, e2, e3, e4, e5, e6} and 
ð : E × E → E be a metric defined by

ψ̌(sk−2
ð(ε,℘)) = ψ̌(sk

1

s2
ð(ε,℘)) ≤ lim

n→+∞
sup ψ̌(skð(εn+1,℘n+1))

= lim
n→+∞

sup ψ̌(skð(I(εn,℘n),I(℘n, εn)))

≤ lim
n→+∞

sup ψ̌(Ph (εn,℘n,℘n, εn))− lim
n→+∞

inf η̂(Ph (εn,℘n,℘n, εn))

≤ ψ̌(ð(ε,℘))− lim
n→+∞

inf η̂(Ph (εn,℘n,℘n, εn))

< ψ̌(ð(ε,℘)),

ψ̌(ð(I(ε,℘),I(ð, I))) ≤ ψ̌(max{ð(h ε, h ð),ð(h ℘, h I)})

− η̂(max{ð(h ε, h ð),ð(h ℘, h I)})

ð(I(ε,℘),I(ð, I)) ≤ ϕ(max{ð(h ε, h ð),ð(h ℘, h I)}),

(ε,℘) = (℘, ε) = 0, if ε = ℘ = {e1, e2, e3, e4, e5, e6}

and ε = ℘, (ε,℘) = (℘, ε) = 3, if ε = ℘ = {e1, e2, e3, e4, e5}

and ε �= ℘, (ε,℘) = (℘, ε) = 12, if ε = {e1, e2, e3, e4}

and ℘ = e6, (ε,℘) = (℘, ε) = 20, if ε = e5 and ℘ = e6, with usual order ≤ .

A self-mapping I on E defined by 
Ie1 = Ie2 = Ie3 = Ie4 = Ie5 = 1,Ie6 = 2 has a fixed 
point with ψ̌(y) =

y
2 and η̂(y) = y

4 where y ∈ [0,+∞).

Proof  When s = 2 , (E , ð,≤) is a complete partially 
ordered b-metric space. Let ε,℘ ∈ E such that ε < ℘ 
then we’ll look at the cases below.

Case 1. If ε,℘ ∈ {e1, e2, e3, e4, e5} then 
ð(Iε,I℘) = ð(e1, e1) = 0 . Hence,

Case 2. If ε ∈ {e1, e2, e3, e4, e5} and ℘ = e6 , then 
ð(Iε,I℘) = ð(e1, e2) = 3 , P(e6, e5) = 20 and 
P(ε, e6) = 12 , for ε ∈ {e1, e2, e3, e4} . Hence,

As a result, all of the conditions of Theorem 3.1 are met, 
and hence I has a fixed point.�  �

Example 3.15  Let us define a metric ð with usual order 
≤ by

where E = {0, 1, 12 ,
1
3 ,

1
4 , ...,

1
n , ...} . A self-mapping I on 

E by I0 = 0,I 1
n = 1

12n (n ≥ 1) has a fixed point with 
ψ̌(y) = y and η̂(y) = 4y

5  for y ∈ [0,+∞).

ψ̌(2ð(Iε,I℘)) = 0 ≤ ψ̌(P(ε,℘))− η̂(P(ε,℘)).

ψ̌(2ð(Iε,I℘)) ≤
P(ε,℘)

4
= ψ̌(P(ε,℘))− η̂(P(ε,℘)).

ð(ε,℘) =











0 , if ε = ℘

1 , if ε �= ℘ ∈ {0, 1}

|ε − ℘| , if ε,℘ ∈ {0, 1
2n ,

1
2m : n �= m ≥ 1}

6 , otherwise.
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Proof  ð is clearly discontinuous, and (E , ð,≤) is a com-
plete partially ordered b-metric space for s = 12

5  . Now 
we’ll look at the following cases for ε,℘ ∈ E with ε < ℘.

Case 1. Suppose ε = 0 and ℘ = 1
n (n > 0) , then 

ð(Iε,I℘) = ð(0, 1
12n ) =

1
12n and P(ε,℘) = 1

n and 
P(ε,℘) = {1, 6} . Thus,

Case 2. Let ε = 1
m and ℘ = 1

n where m > n ≥ 1 , then

Thus,

Hence, we have the conclusion from Theorem 3.1 as all 
assumptions are fulfilled. �

Example 3.16  Define a metric d : E × E → E , where 
E = {ℓ̃/ℓ̃ : [a1, a2] → [a1, a2] is continuous} by

for any ℓ̃1, ℓ̃2 ∈ E , 0 ≤ a1 < a2 with ℓ̃1 � ℓ̃2 implies 
a1 ≤ ℓ̃1(y) ≤ ℓ̃2(y) ≤ a2, y ∈ [a1, a2] . A self-mapping I 
on E defined by Iℓ̃ = ℓ̃

5 , ℓ̃ ∈ E has a unique fixed point 
with ψ̌(y) = y and η̂(y) = y

3 for any y ∈ [0,+∞].

Proof  As min(ℓ̃1, ℓ̃2)(y) = min{ℓ̃1(y), ℓ̃2(y)} is continu-
ous and all other assumptions of Theorem 3.3 are fulfilled 
for s = 2 . Hence, 0 ∈ E is a unique fixed point of I .�  �

Limitations
We examined a fixed point, a coincidence point and a 
couple coincidence point for mappings that are satisfy-
ing generalized (ψ̌ , η̂)-weak contractions in a partially 
ordered b-metric space. The findings in this paper are 
generalized and extended a few well-known results in the 
current literature. Some examples are shown at the end 
to support the results obtained here.
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12

5
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)
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