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Intrabronchial application of extracellular 
histones shows no proinflammatory effects 
in swine in a translational pilot study
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Abstract 

Objective:  Extracellular histones have been identified as one molecular factor that can cause and sustain alveolar 
damage and were linked to high mortality rates in critically ill patients. In this pilot study, we wanted to validate the 
proinflammatory in vivo effects of local histone application in a prospective translational porcine model. This was 
combined with the evaluation of an experimental acute lung injury model using intrabronchial lipopolysaccharides, 
which has been published previously.

Results:  The targeted application of histones was successful in all animals. Animals showed decreased oxygenation 
after instillation, but no differences could be detected between the sham and histone treatments. The histologic 
analyses and inflammatory responses indicated that there were no differences in tissue damage between the groups.
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Introduction
The acute respiratory distress syndrome (ARDS) is a reg-
ularly encountered life-threatening condition that often 
requires treatment in intensive care units and mechanical 
ventilation [1].

Several rodent [2] and porcine [3] models have been 
used to identify new therapeutic options and inflamma-
tory pathways to target; the porcine models show the 
strongest similarity to human physiology and ventilation 
patterns, thus providing clinically reliable insights into 
the cause-effect relations of pathophysiologic phenom-
ena. In the past decade, the discovery of the proinflam-
matory effects of extracellular histones and neutrophil 
extracellular traps (NETs) has been reported, and their 
roles in the development of multiorgan damage and 
ARDS during sepsis have been discovered [4–7]. Most 
importantly, lung tissue appears to be highly susceptible 

and vulnerable to elevated histone levels, suggesting a 
direct correlation between histone serum concentrations 
and ARDS development [8, 9].

In this pilot study, we tried to translate previously 
shown proinflammatory effects of histones in rodents 
[2] to swine to confirm and validate the existing data as 
well as to evaluate the therapeutic implications in a more 
clinically accurate setting. Additionally, we designed a 
standardized acute lung injury model for lipopolysac-
charides using the same methods. This report has already 
been published elsewhere [10]. We hypothesized that 
overdoses of histones should have comparable effects in 
swine and would cause tissue inflammation and alveo-
lar leakage in the lung as well as potential septic organ 
damage.
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Main text
Materials and methods
Animals
Fourteen male German landrace pigs (12–16  weeks, 
28–35  kg) were acquired from a local private farm and 
were treated as described previously [10, 11].

Intervention
Following the baseline measurements, flexible bron-
choscopy was performed using a single-use fiberoptic 
bronchoscope (Ambu aScope Regular, Ambu GmbH, 
Bad Nauheim, Germany). The right and left caudal main 
bronchi were identified and inspected, and after con-
firmed insertion of the endoscope into the respective 
bronchus, the animals were randomized into two groups.

Group 1 (“Intrabronchial Histones”), n = 7: 50  ml of a 
saline solution containing 100 mg of mixed calf thymus 
histones (LS002548, Worthington Biochemical Corp, 
Lakewood, NJ, USA) was instilled through the broncho-
scope into each caudal main bronchus separately, adding 
up to a total of 100 ml and 200 mg of histones.

Group 2 (“Sham”), n = 7: 50 ml of a saline solution with-
out any additives was instilled through the bronchoscope 
into each caudal main bronchus separately, adding up to 
a total of 100 ml.

Monitoring
After the intervention, the animals were monitored for 
8  h, and sample collection was performed as described 
below. During the monitoring period, the mean arterial 
blood pressure was kept over 60 mmHg using a norepi-
nephrine drip if necessary and glucose was substituted 
to maintain the levels above 80  mg/dl. The ventilation 
parameters were adjusted according to the ARDS net-
work guidelines [12] once oxygen saturation decreased 
below 93%.

Measurements/sample collection
Cardiopulmonary data were constantly measured and 
collected during the duration of the experiment using 
a Datex Ohmeda S5 monitor (GE Healthcare, Munich, 
Germany). These variables included respiratory rate, ven-
tilation pressures, oxygen fractions, oxygen saturation, 
intra-arterial blood pressure, pulmonary artery pressure, 
heart rate and core temperature. Additionally, blood gas 
analyses and cardiac output (CO) measurements were 
taken at baseline and every hour after the intervention as 
described before [11].

After termination, both lungs were harvested, and sam-
ples from the cranial and caudal left lung lobes (central 
dorsal and ventral) were either snap frozen for biomo-
lecular analyses or preserved in 2% formaldehyde solu-
tion for histologic fixation. Histopathologic scoring and 

interleukin 6 (IL-6) and tumor necrosis factor alpha 
(TNFα) expression analyses were performed via ELISA 
and RT-PCR as described previously [13, 14].

As the primary outcome parameter, pulmonary func-
tion represented by the Horovitz ratio (PaO2/FiO2) was 
determined. Secondary outcomes were the histologi-
cal organ damages and the proinflammatory cytokine 
expressions.

The experiment was terminated with the animals being 
euthanized using high doses of propofol (200  mg) and 
potassium chloride (40 mmol).

Statistical analysis
Since this was a pilot study with no previous data to draw 
from, no adequate animal number calculation could be 
performed and animal numbers were chosen empirically. 
Statistical analyses were performed using 2-way ANOVA 
intergroup tests with a post hoc Bonferroni correction 
for repeated measurements as well as Mann–Whitney U 
test for single measurements via GraphPad Prism 8 soft-
ware (GraphPad Software, Inc., La Jolla, CA, USA). Data 
in the text are presented as the mean (standard devia-
tion). P-values < 0.05 were considered significant.

Results
The interventions were carried out successfully in all ani-
mals without alterations to the study protocol. No prob-
lems occurred during the endotracheal intubation or 
while placing the fiberoptic bronchoscope. All 14 animals 
survived the 8 h monitoring period.

In the intrabronchial instillation groups, there were no 
significant differences in the vital parameters, including 
the heart rate (HR), mean arterial blood pressure (MAP), 
pulmonary pressure (PAP) and central venous pressure 
(CVP), between the sham and histone treatment groups 
(Table  1). The oxygenation and gas exchange decreased 
significantly after instillation but showed no intergroup 
differences and no significant changes during the moni-
toring period compared to those of the sham group 
(Fig. 1). The inspiratory pressures increased accordingly 
after the intervention, stayed elevated during the moni-
toring period and did not differ between the instillation 
groups (see Additional file  1). Neither IL-6 nor TNFα 
expression was elevated in the lung tissue samples after 
the histone treatment (see Additional file  1). Histologic 
damage scoring showed a tendency towards higher tis-
sue damage in the dependent lung areas after instillation 
but showed no statistical significance and no differences 
between the interventions (Fig. 2).

Discussion
This study—for the very first time—tried to apply recent 
findings regarding the toxicity of extracellular histones 
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Table 1  Collected data on haemodynamic parameters, respiratory measurements and blood gas analyses

HR: heart rate; MAP: mean arterial pressure; CVP: central venous pressure; PAP: pulmonary arterial pressure; NE: norepinephrine; CI: cardiac index; T: temperature; FRC: 
functional residual capacity; SvO2: central venous oxygen saturation; it: intratracheal

Parameter
Mean (SD)

Baseline 1 h 2 h 4 h 6 h 8 h

HR [bpm]

 Sham 79 (8) 79 (13) 75 (12) 92 (9) 86 (11) 83 (15)

 Histone it 74 (18) 79 (28) 71 (16) 91 (24) 88 (22) 85 (21)

MAP [mmHg]

 Sham 71 (5) 84 (7) 84 (7) 80 (7) 75 (8) 75 (12)

 Histone it 65 (10) 77 (10) 74 (12) 77 (8) 72 (9) 78 (13)

CVP [mmHg]

 Sham 8 (2) 9 (4) 10 (3) 11 (4) 9 (3) 10 (3)

 Histone it 6 (2) 9 (2) 9 (1) 9 (1) 8 (1) 8 (2)

PAP [mmHg]

 Sham 28 (9) 33 (5)* 35 (7)* 33 (6)* 29 (4)* 30 (8)*

 Histone it 18 (4) 23 (8) 27 (7)* 28 (6)* 23 (5) 26 (6)

CI [(l/min)/m2]

 Sham 3.5 (0.8) 3.5 (0.7) 3.4 (0.3) 3.6 (0.4) 3.9 (0.5)* 3.6 (0.5)*

 Histone it 2.9 (0.8) 2.8 (0.4) 3.0 (0.5) 3.5 (0.5) 3.9 (0.5)* 3.8 (0.5)*

NE [mg/h]

 Sham 0 0.06 (0.15) 0 0 0 0

 Histone it 0 0.1 (0.19) 0.27 (0.49) 0.14 (0.38) 0.14 (0.38) 0.14 (0.38)

T [°C]

 Sham 36.7 (0.8) 37.5 (0.6) 37.6 (0.4) 37.7 (0.5) 37.9 (0.5) 37.7 (0.2)

 Histone it 35.8 (0.7) 36.7 (0.8) 36.8 (0.6) 37.6 (0.6) 37.7 (0.5) 37.7(0.8)

FRC [ml]

 Sham 662 (105) 452 (104)* 428 (103)* 389 (107)* 464 (66)* 496 (44)*

 Histone it 772 (197) 501 (158)* 535 (172)* 471 (98)* 463 (107)* 468 (103)*

Lactate [mmol/l]

Sham 1.8 (1.2) 1.58 (0.49) 1.29 (0.39) 0.79 (0.31) 0.5 (0.09) 0.5 (0.22)

Histone it 1.3 (0.53) 1.56 (0.47) 1.57 (0.61) 0.99 (0.3) 0.67 (0.16) 0.7 (0.31)

SvO2 [%]

Sham 67 (7) 55 (9) 54 (9) 54 (16) 55 (6) 50 (10)

Histone it 67 (8) 50 (13) 53 (13) 60 (10) 56 (9) 52 (9)

Fig. 1  Oxygenation and gas exchange over the 8 h monitoring period. The Horovitz ratio (a) decreased significantly after endotracheal fluid 
instillation but showed no relevant intergroup difference at any time. Decarboxylation (b) did not differ significantly
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in a prospective, randomized fashion in an established 
intensive care setting in pigs. While there were no rele-
vant technical difficulties in performing the experiments 
or administering the agents, no significant inflamma-
tory effects could be detected in the intervention groups. 
Although the intrabronchially instilled animals showed 
compromised pulmonary function in both groups, no 
pulmonary inflammation, circulatory failure, fever, or any 
other pathological effects over the 8 h monitoring period 
could be detected. While retrospective studies in humans 
with ARDS, sepsis or acute pancreatitis showed correla-
tions between the histone serum levels and increased 
mortality rates [2, 6, 15], we did not observe any correla-
tions in the deterioration of vital signs.

Pathological histone concentrations in scientific analy-
ses vary and are estimated to be 5–50 µg/ml [15, 16]. To 
increase the likelihood of quantifiable results, we used 
intrabronchial dosages that amounted to approximately 
50 µg/ml but still did not detect any effects. Although the 
intrabronchially instilled animals showed a significant 
decrease in gas exchange and oxygenation, these results 
were expected and most likely due to the fluid congest-
ing and compromising the lung. However, no additional 
impairments were observed beyond the initial drop 
in PaO2, although previous experiments by our group 
showed significantly increased inflammation when the 
same protocol was used with lipopolysaccharide instilla-
tion [10]. While histones have been described to be toxic 
to epithelial and endothelial cells in vitro [2, 5], no spe-
cific inflammatory changes were detected in either of the 
lung damage groups. Additionally, no proinflammatory 
reactions were detected at the molecular level, suggesting 

no negative influence even with direct tissue contact of 
the solution.

Conclusions
Although non-physiological high doses of histones were 
used, previously described proinflammatory reactions 
or organ damage could not be replicated in swine in this 
experimental setting.

Limitations
Due to the pilot character and lack of pre-existing data on 
the use in large animals, the study has several technical 
and design limitations. First, it can be argued that only 
nonspecific histone isomer mixtures were used. While 
the use of purified histone preparations is costly, the 
isolation and production of single isomer agents is even 
more sophisticated and expensive, especially when con-
sidering their use in large animals. However, studies have 
suggested that histone toxicity may vary between isomers 
and post-translational modifications and affect different 
organs depending on the isoform they are exposed to 
[17, 18], thus potentially affecting the observable effects. 
Additionally, while bovine histone preparations do affect 
murine cell lines, there is no data on their effects on por-
cine tissue. Notably, the studies that revealed potentially 
increased mortality rates due to high amounts of circu-
lating histones in critically ill patients only used nonspe-
cific screening assays for determination of the histone 
concentrations in patient serum samples [15, 16]. Addi-
tionally, most cell culture and rodent experiments use 
histone mixtures of at least 4–6 isomers [2, 5, 19]. The 
histone preparation used in this trial was a mixture of 

Fig. 2  Histologic damage scoring modified after Ziebart et al. [13, 14] evaluating 7 damage aspects (alveolar edema, interstitial edema, 
hemorrhage, inflammatory infiltration, epithelial destruction, microatelectasis and overdistension. Direct comparisons of samples from the cranial 
lobe (UL) and caudal lobe (LL) (A). Histone-treated animals showed no significant increase in lung damage independent of sample origin. A 
tendency towards higher scores in the dependent lung areas was not significant and mostly due to intraalveolar edema following instillation. 
Detailed damage aspect analysis (B) of pooled lung tissue samples. No significant shifts are seen for any damage criteria, suggesting the summative 
score is consistent. The intravenously administered animals were not analyzed since no pulmonary effects were seen
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calf thymus histones produced in comparatively large 
batches. While there is no preliminary data on proinflam-
matory effects of this exact preparation, the quality and 
purity of the proteins is guaranteed by the manufacturer 
and the agent has been used to identify histone interac-
tions before [20]. Given the fact, that various different 
histone preparations have been used in the trials cited in 
this manuscript and have been shown to induce inflam-
mation in different tissues, the expectation of respective 
effects of this histone solution can be warranted. Since 
intrabronchial instillation has never been performed in 
pigs, loss of agents either due to chemical characteristics, 
adhesion to the endoscope or even an unexpected spe-
cies-specific increased resistance to histone effects can-
not be sufficiently excluded. To quantify this problem, we 
would need to perform exact serum concentration analy-
ses as well as a dose–response titration trial or porcine 
cell inoculations, which were not carried out in this study 
due to the pilot character and infrastructural limitations. 
This is a major flaw, since the quality of the used solution 
could not be verified prior to its use.

Second, the instillation method could be criticized as 
flawed with a high potential of confounding factors due 
to relatively high instillation volumes and significantly 
decreased pulmonary function in both the sham and 
histone groups, most likely due to intra-alveolar edema 
and atelectasis. However, in another trial of our group, 
the exact same method was used with comparable ini-
tial declines in PaO2 after instillation of 20 mg lipopoly-
saccharide (LPS), and we could still detect significant 
increases in tissue inflammation as well as septic circula-
tory effects [10]. LPS and histones should affect similar 
pathways, heavily relying on Toll-like receptors 2 and 4 
[2, 4]. Hence, a comparable inflammatory response, espe-
cially to high doses considering the amounts used and 
measured in cell cultures and intensive care patients, 
could reasonably be expected. Additionally, the targeted 
administration method via bronchoscopy allows for 
direct control of the drug application and should prevent 
unnecessary losses caused by prolonged airway passage 
compared to blind intratracheal injection or other untar-
geted methods [21–23].

Third, a large animal model for analysis of the histone 
effects and intensive care treatment is needed. While the 
data mentioned above clearly indicate the toxic potential 
of histones in vitro, the in vivo data are solely based on 
retrospective sample collection or correlation analyses 
with no randomized prospective approach. Additionally, 
the finding that the detected histone concentrations in 
critically ill patients with the worst outcomes tend to be 
the highest allows no deduction of direct causation, since 
nonspecific histone detection could also stem from sub-
stantial cell death, which is expected in patients suffering 

from multiorgan failure. This hypothesis is supported by 
the fact that the most impressive human clinical data on 
the serum concentrations of histones stem from trauma 
and pancreatitis patients [15, 24], with both entities being 
linked to extensive tissue damage and necrosis; these fac-
tors potentially explain the amount of liberated nuclear 
proteins without direct evidence of inflammatory media-
tion through histones. However, most groups supported 
their findings with in vitro testing and showed cytotoxic 
effects on organ tissue-derived cell lines [2, 25, 26]. Since 
we did not have direct access to murine models or cell 
culture experiments during this study, we could not con-
firm the toxicity of our prepared solution.
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