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RESEARCH NOTE

On solving initial value problems for partial 
differential equations in maple
Srinivasarao Thota* 

Abstract 

Objectives:  In this paper, we present and employ symbolic Maple software algorithm for solving initial value 
problems (IVPs) of partial differential equations (PDEs). From the literature, the proposed algorithm exhibited a great 
significant in solving partial differential equation arises in applied sciences and engineering.

Results:  The implementation include computing partial differential operator (PartialDiffOperator), Greens 
function (GreensFunction) and exact solution (ExactSolution) of the given IVP. We also present syntax, 
ApplyPartialDiffOp, to apply the partial differential operator to verify the solution of the given IVP obtained 
from ExactSolution. Sample computations are presented to illustrate the maple implementation.
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Introduction
In the scientific area, symbolic computation is one of 
the significant subjects, and it is playing dominant role 
in solving many mathematical equations, particularly 
the applications related to differential equations. In the 
symbolic computation research, the biggest success is 
the developing several substantial software systems. Sev-
eral symbolic algorithms/methods have been created 
by various scientists, researchers and engineers; see, for 
example,   [1–26]. Most of these algorithms have been 
implemented in various mathematical software. Hence, 
in this paper, we focus on the implementation of the 
efficient algorithm presented in  [13]. For more under-
standing and application on Maple software commands 
on how to obtain numerical solutions and the plots 
see [27–31].

In this paper, we mainly focused on the Maple imple-
mentation of the initial value problems (IVPs) for solving 

partial differential equations (PDEs) with constant coef-
ficients. The proposed algorithm/method was introduced 
by S. Thota and S. D. Kumar in 2020, see  [13] for more 
details. In [13], they presented a new symbolic method/
algorithm to find the Green’s function for a given IVP 
of linear second order PDEs with constant coefficients. 
In this method, they focused on computing the Green’s 
function using the integro-differential algebras  [1, 3, 9, 
25]. They have discussed several numerical examples to 
illustrate the symbolic algorithm. They also briefly dis-
cussed about the implementation in Maple. The rest of 
paper is planned as follows. In Sect.  1.1, we briefly state 
the symbolic algorithm of IVP for PDEs, Sect.  2 presents 
the Maple implementation of the algorithm with pseudo-
code and Maple programming and Sect.   3 focused on 
sample computations to illustrate the implementation.

Symbolic method/algorithm
In this section, we recall the symbolic method/algorithm 
for IVPs for second order PDEs, see [13], for more details 
about the algorithm.
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The general form of the IVP for a second order PDE 
with inhomogeneous initial conditions over F = C∞(R2) 
is as follows.

where u(x, y) ∈ F  is unknown function which is going to 
be determined, called solution of (1), using forcing func-
tion f (x, y) ∈ F  and the initial data α1(y),α2(y) ∈ F  . The 
proposed algorithm solves the IVP (1) not only for static 
values of f(x, y), α1(y),α2(y) but give a standard formula 
of the solution of IVP (1). The operators notation of the 
IVP (1) is

where D = a∂xx + b∂xy + c∂yy is differential operator; 
Ẽu = u(0, y), Ẽ∂xu =

(

∂u
∂x

)

x=0
 are initial evaluation oper-

ators; and α1,α2 are initial data of the given IVP. One can 
factor the second order differential operator into linear 
operator [13] and then the given IVP for PDE (2) can be 
expressed as follows

Now we present main theorem of algorithm for comput-
ing the Green?s function of IVP (2) over integro-differen-
tial algebras.

Theorem 1  Let (F ,D,A) be an integro-differential alge-
bra. Suppose D = a∂xx + b∂xy + c∂yy is a linear partial 
differential operator of second order. Then the IVP (2) has 
the unique solution as follows, for m1  = m2,

(1)
a
∂2u(x, y)

∂x2
+ b

∂2u(x, y)

∂x∂y
+ c

∂2u(x, y)

∂y2
= f (x, y),

u(0, y) = α1(y),
∂u(0, y)

∂x
= α2(y),

(2)
Du = f ,

Ẽu = α1, Ẽ∂xu = α2,

a

(

∂x +
(

b

2a
+

√
b2 − 4ac

2a

)

∂y

)

(

∂x +
(

b

2a
−

√
b2 − 4ac

2a

)

∂y

)

u = f ,

Ẽu = α1, Ẽ∂xu = α2.

for m1 = m2,

here m1 = b
2a +

√
b2−4ac
2a ,m2 = b

2a −
√
b2−4ac
2a  , and 

a  = 0, b, c ∈ R.

Proof  See [13, Theorem 5].�
�

Main text
This section discusses about the Maple implementation of 
IVPs for PDEs, IVPforPDE package and its pseudo-code. 
In this implementation, various data types are created to 
compute the Green’s function, namely PartialDiffO
perator(a1,a2,a3), where a1,a2,a3 are the coef-
ficients of the differential operator as given in Eq.  (1); and 
GreensFunction(ParDiffOp), where ParDiffOp is 
the partial differential operator as given Eq. (2). Now finally, 
we have ExactSolution(ParDiffOp, forcefun, 
alpha, beta), where forcefun is the forcing function, 
alpha, beta are the initial data. We also created Apply
PartialDiffOp(ParDiffOp,sol) to verify the solu-
tion sol. This Maple package is available with example work-
sheet at http://www.sinivasaraothota.webs.com/research.

u =
1

a

∫ x

0

∫ t

0

f (ξ , y+m1(t − x)

−m2(t − ξ)) dξ dt

+
(

m2

m2 −m1

)

α1(y−m1x)

+
(

m1

m1 −m2

)

α1(y−m2x)

+
(

1

m1 −m2

)
∫ y−m2x

y−m1x
α2(s) ds ∈ F ,

u =
1

a

∫ x

0

∫ t

0

f (ξ , y−m1(x − ξ)) dξ dt

+ α1(y−m1x)+ xα2(y−m1x)

+m1x∂yα1(y−m1x) ∈ F ,
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Pseudo‑Code
The following pseudo-code gives the exact solution of a 
given IVP for PDEs of second order.

The following pseudo-code shows how to compute the 
Green?s function of a given IVP for PDEs of second order 
of the type in Eq.  (1).
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Maple implementation
The following procedure gives partial differential opera-
tor of the given IVP.

The following procedure produces the Green’s function

Using the following data type, one can obtain the exact 
solution of the given IVP.
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One can also verify the solution using the following 
procedure.

Results
In this section, we show sample computations using 
the implementation of IVP. Recall couple of examples 
from [13] to verify the package. However, there are sev-
eral example available in  [32–34] to verify the Maple 
implementation.

Example 1  Consider second order IVP of the form [13] 
to demonstrate the Maple implementation.

From Eq.  (3), we have a1 = 1, a2 = 1, a3 = −6, f (x, y)

= y cos x,α = y− 1,β = y2 Using Maple,

> PDO := PartialDiffOperator(1, 1, -6);

> G := GreensFunction(PDO)

(3)

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂x∂y
− 6

∂2u(x, y)

∂y2
= y cos x,

u(0, y) = y− 1,
∂u(0, y)

∂x
= y2.

PDO := ∂(xx)+ ∂(xy)− 6∂(yy).

G =
∫ x

0

∫ t

0
f (s, y− 2(t − x)+ 3(s − t)) ds dt +

3

5
α1(y+ 2x)

+
2

5
α1(y− 3x)−

1

5

∫ y−3x

y+2x
α2(s) ds.

> Sol := ExactSolution(PDO, y*cos(x), 
y-1, y∧2);

> ApplyPartialDiffOp(PDO, G);

> ApplyPartialDiffOp(PDO, Sol);

Example 2  Consider second order IVP of the form [13]

The exact solution of IVP (4) as

Using the Maple implementation, we have:

> PDO:=ParialDiffOperator(4,-4,1);

> g:=GreensFunction(PDO);

Sol :=2y− x − y cos x + sin x − 1

+
1

15
(y+ 2x)3 −

1

15
(y− 3x)3.

f (x, y), a1(y), a2(y).

y cos(x), y− 1, y2.

(4)

4
∂2u(x, y)

∂x2
− 4

∂2u(x, y)

∂x∂y
+

∂2u(x, y)

∂y2
= 16 log(x + 2y),

u(0, y) = 0,
∂u(0, y)

∂x
= 0.

u(x, y) = 2x2 log(x + 2y).

PDO := 4∂(xx)− 4∂(xy)+ ∂(yy).
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>u:=ExactSolution(PDO,16*log(x+
2*y),0,0);

> ApplyPartialDiffOp(PDO,u);

> ApplyPartialDiffOp(PDOp,g);

Limitations
The algorithm in  [13] is focused on the IVP for regular 
linear PDEs, hence the implemented maple package, 
IVPforPDE, presented in this paper is valid for the 
regular linear PDEs with initial conditions. We have also 
presented a syntax to check the validity of solution of a 
given problem.

Abbreviations
IVP: Initial value problem; PDE: Partial differential equation.
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g :=
1

4

∫ x

0

∫ t

0
f (s, y+

1

2
x −

1

2
s) ds dt

+ a1(y+
1

2
x)+ xa2(y+

1
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x)−

1

2
xD(a1)(y+

1

2
x).
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