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Abstract 

Objectives:  Complex algae are photosynthetic organisms resulting from eukaryote-to-eukaryote endosymbiotic-
like interactions. Yet the specific lineages and mechanisms are still under debate. That is why large scale phylog-
enomic studies are needed. Whereas available proteomes provide a limited diversity of complex algae, MMETSP 
(Marine Microbial Eukaryote Transcriptome Sequencing Project) transcriptomes represent a valuable resource for 
phylogenomic analyses, owing to their broad and rich taxonomic sampling, especially of photosynthetic species. 
Unfortunately, this sampling is unbalanced and sometimes highly redundant. Moreover, we observed contaminated 
sequences in some samples. In such a context, tree inference and readability are impaired. Consequently, the aim of 
the data processing reported here is to release a unique set of clean and non-redundant transcriptomes produced 
through an original protocol featuring decontamination, pooling and dereplication steps.

Data description:  We submitted 678 MMETSP re-assembly samples to our parallel consolidation pipeline. Hence, 
we combined 423 samples into 110 consolidated transcriptomes, after the systematic removal of the most contami-
nated samples (186). This approach resulted in a total of 224 high-quality transcriptomes, easy to use and suitable to 
compute less contaminated, less redundant and more balanced phylogenies.
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Objective
Plastid-bearing organisms are scattered across the eukar-
yotic tree. Among those, CASH lineages have plastids 
related to red algae, but the mechanisms by which they 
were acquired and the ancestors involved remain unclear 
[1–3]. To overcome the inconsistencies of purely endo-
symbiotic models [4], we propose kleptoplastidy [5] as 
an additional mechanism for explaining plastid spread 
among CASH lineages. In line with the shopping bag 
model [6], our hypothesis posits multiple transient 

interactions with preys of diverse origins but also pro-
poses a rationale for the selective force driving the pro-
gressive accumulation of plastid-targeted genes. In such 
a scenario, also recently proposed by Bodyl [7], the phy-
logenetic diversity of plastid-targeted genes would be 
higher than predicted with endosymbiotic models, where 
genes originate mostly from a single source [8]. Obvi-
ously, testing this hypothesis requires a scrupulous phylo-
genetic study and at the largest scale possible. In addition, 
the inherent nature of those genes, which are transferred 
from one lineage to another, makes them hardly distin-
guishable from actual contaminations, prompting the 
use of data as clean as possible to avoid false positives. 
To overcome the limited diversity of complex algal pro-
teomes and reduce the high redundancy of the richly 
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sampled MMETSP transcriptomes [9, 10], we designed a 
consolidation pipeline. However, we chose to remove the 
most contaminated samples instead of trying to decon-
taminate them. This somewhat radical method has the 
advantage of allowing a more reliable interpretation of 
downstream phylogenetic analyses at the expense of a 
moderate loss of taxonomic breadth and richness. We 
used two methods to estimate contamination levels, one 
targeting cross-contaminations [11] (between MMETSP 
samples, using raw reads) and the other targeting more 
regular contaminations [12, 13] (from any eukaryotic 
source, using ribosomal markers). Finally, we decided to 
release the resulting transcriptomes in line with the FAIR 
data principles [14].

Data description
MMETSP transcriptomic samples [9] cover a wide range 
of primary and complex algae and were recently re-
assembled [10]. Despite showing better annotation over-
all, we observe high redundancy and contaminations, 
which complicates the study of plastid spread across 
eukaryotic lineages. To improve this dataset, we devel-
oped a pipeline to eliminate taxonomic redundancy while 
maximizing data purity and completeness. In detail, 
out of the 678 samples in MMETSP re-assemblies, 16 
were discarded from the start (14 with less than 5000 
sequences, 1 with a corrupted FASTQ file and another 
one because the organism was unknown). The remain-
ing 662 were screened for contaminations with Forty-
Two [12, 13] using 78 ribosomal protein markers, and 89 
samples were further discarded because they were too 
contaminated (Data file 1, Data set 1), leaving 573 sam-
ples. To minimize taxonomic redundancy, we aimed to 
combine closely related samples. However, 124 samples 
represented unique genera and were not combined. As 
phylogenetic diversity can be very different across protist 
genera, we determined whether multiple samples within 
a given genus should be all combined or if some should 
only be combined at the species/strain level. To this end, 
we used CroCo [11] and combined the samples that 
shared a “cross-contamination” value ≥ 10% (interpreted 
here as close relatedness [11]) (Data file 2). Otherwise, 
they were left uncombined, even if from the same genus. 
This dual strategy yielded 110 combined samples (out 
of 423 candidate samples) and 26 uncombined samples 
(additional singletons), thereby aggregating 313 redun-
dant samples (Data file 1, Data file 3). From a taxonomic 
point of view, this combination had the effect of reduc-
ing the number of samples by more than 50% for the 
majority of main phyla (Data file 4), resulting in a total 
of 260 transcriptomes (combined and singletons, Data 
set 2). Furthermore, the remaining most contaminated 
transcriptomes were removed using two strategies, (i) by 

targeting cross-contaminations with Sobek, a new paral-
lel implementation of CroCo [11] (Data file 5), (ii) after 
removing intra-sample redundancy with CD-HIT-EST 
[15, 16] (sequence identity threshold of 95%), by target-
ing regular contaminations with Forty-Two (Data set 3) 
[12, 13]. Both detection methods combined pinpointed 
36 transcriptomes, corresponding to 97 original samples 
(Data file 6, Data file 7, Data file 1). Finally, sample com-
pleteness was assessed with BUSCO [17, 18] (Data file 8). 
The resulting data set of 224 transcriptomes (Data set 2) 
spans a wide range of organisms, especially among pho-
tosynthetic species (172/224), with a majority of complex 
algae (145/224) (Data set 4). Its usefulness is illustrated 
with the GAPDH phylogeny (Data set 5). Briefly, two dif-
ferent trees were built after enriching the same starting 
set of sequences from high-quality proteomes [19], one 
using all 570 samples from plastid-bearing organisms and 
the other using 172 transcriptomes resulting from our 
pipeline. The comparison of these two trees shows that 
the enrichment performed with the data set described 
here is less contaminated, less redundant and more bal-
anced from a taxonomic point of view, thereby allowing 
more robust evolutionary interpretations.

Limitations

•	 The way some samples were combined at the genus 
level might lead to a loss of resolution at the species/
strain level within a given genus.

•	 Even though combined samples were dereplicated, 
sequence redundancy remains substantial, especially 
among dinoflagellates, which are known for bearing 
multiple copies of their genes.

•	 Similarly, even if we provide a set of cleaned tran-
scriptomes, contaminations remain. First, in some 
cases, such as ciliates, it is a “feature” of the phylum 
that all its members are highly contaminated. There-
fore, we used a phylum-based outlier approach to 
determine whether a sample was too contaminated, 
because setting a global threshold for all phyla at 
once was impracticable. Second, in other cases, con-
tamination by foreign sequences is a “necessary evil” 
for the reason that we plan to study transferred genes 
in a plastid acquisition context, and those would be 
undetectable in a completely “uncontaminated” tran-
scriptome.
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Table 1  Overview of data files/data sets

Label Name of data file/data set File types
(file extension)

Data repository and identifier (DOI or accession 
number)

Data file 1 Methods PDF file (.pdf ) Figshare https://​doi.​org/​10.​6084/​m9.​figsh​are.​14079​866.​
v5 [20]

Data set 1 Forty-Two reports and configuration files (662 indi-
vidual samples)

Text files (.tsv,.csv,.yaml) Figshare https://​doi.​org/​10.​6084/​m9.​figsh​are.​12362​699.​
v1 [21]

Data file 2 Consolidation table Spreadsheet (.xlsx) Figshare https://​doi.​org/​10.​6084/​m9.​figsh​are.​14727​411.​
v3 [22]

Data file 3 Sample consolidation report Image file (.pdf ) Figshare https://​doi.​org/​10.​6084/​m9.​figsh​are.​12154​824.​
v3 [23]

Data file 4 Redundancy drop analysis Spreadsheet (.xlsx) Figshare https://​doi.​org/​10.​6084/​m9.​figsh​are.​12213​731.​
v3 [24]

Data set 2 Transcriptomes FASTA files (.tar.gz) Figshare https://​doi.​org/​10.​6084/​m9.​figsh​are.​13634​840.​
v1 [25]

Data file 5 Sobek analysis summary Text file (.csv) Figshare https://​doi.​org/​10.​6084/​m9.​figsh​are.​12410​522.​
v3 [26]

Data set 3 Forty-Two reports and configuration files (260 tran-
scriptomes)

Text files (.tsv,.csv,.yaml) Figshare https://​doi.​org/​10.​6084/​m9.​figsh​are.​13006​622.​
v1 [27]

Data file 6 Consolidated sample purity (cross-contaminations) Image file (.pdf ) Figshare https://​doi.​org/​10.​6084/​m9.​figsh​are.​12173​235.​
v3 [28]

Data file 7 Consolidated sample purity (contaminations) Image file (.pdf ) Figshare https://​doi.​org/​10.​6084/​m9.​figsh​are.​12998​726.​
v3 [29]

Data file 8 Completeness analysis Text file (.csv) Figshare https://​doi.​org/​10.​6084/​m9.​figsh​are.​12154​833.​
v3 [30]

Data set 4 Taxonomic samplings Image files (.png,.html,) Figshare https://​doi.​org/​10.​6084/​m9.​figsh​are.​12401​639.​
v1 [31]

Data set 5 GAPDH phylogenies Image files, text file (.pdf ) Figshare https://​doi.​org/​10.​6084/​m9.​figsh​are.​13096​208.​
v2 [32]
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