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Abstract 

Objective:  Illumina BeadChip arrays are commonly used to generate DNA methylation data for large epidemiologi-
cal studies. Updates in technology over time create challenges for data harmonization within and between studies, 
many of which obtained data from the older 450K and newer EPIC platforms. The pre-processing pipeline for DNA 
methylation is not trivial, and influences the downstream analyses. Incorporating different platforms adds a new level 
of technical variability that has not yet been taken into account by recommended pipelines. Our study evaluated 
the performance of various tools on different versions of platform data harmonization at each step of pre-processing 
pipeline, including quality control (QC), normalization, batch effect adjustment, and genomic inflation. We illustrate 
our novel approach using 450K and EPIC data from the Diabetes Autoimmunity Study in the Young (DAISY) prospec-
tive cohort.

Results:  We found normalization and probe filtering had the biggest effect on data harmonization. Employing a 
meta-analysis was an effective and easily executable method for accounting for platform variability. Correcting for 
genomic inflation also helped with harmonization. We present guidelines for studies seeking to harmonize data from 
the 450K and EPIC platforms, which includes the use of technical replicates for evaluating numerous pre-processing 
steps, and employing a meta-analysis.
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Introduction
Numerous epidemiological studies have examined DNA 
methylation due to its important role in physiologi-
cal processes, and the development and progression of 
human diseases [1]. Microarrays are widely used for 
DNA methylation profiling, and are affordable for studies 

with large sample sizes. Illumina’s methylation array is a 
common choice in many data repositories such as TCGA 
with ~ 12,000 samples, ENCODE with ~ 250 datasets and 
GEO with ~ 7000 datasets (April 2020).

DNA methylation array technologies have evolved so 
more individual methylation CpG sites can be evaluated 
on a single array. Illumina’s BeadChip methylation micro-
arrays are extremely popular, the most recent being the 
HumanMethylationEPIC BeadChip (“EPIC”) released in 
2016 that measures ~ 8,50,000 CpG sites (probes), which 
is an increase from the previous array (HumanMeth-
ylation450K BeadChip, “450K”). In many studies, both 
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platforms have been used, due to technology updates in 
the middle of large projects, or multiple batches for stud-
ies over time [2–6]. Some investigators are interested in 
maximizing sample size for research questions by analyz-
ing data from the current EPIC and older 450K arrays. 
Numerous publications focus on certain aspects of pre-
processing such as normalization [7] or probe filtering [8] 
but there are currently no papers that consider the entire 
pipeline. Establishing best practices is relevant for other 
epidemiological studies that needed to change platforms 
mid-study, in addition to the re-analyses of public data.

We evaluate the performance of common harmoniza-
tion tools of 450K and EPIC data at various pre-process-
ing and analytical steps using the Diabetes Autoimmunity 
Study in the Young (DAISY), which prospectively follows 
genetically high-risk children for the development of 
type 1 diabetes (T1D) [4]. We explored normalization, 
probe-level QC and filtering, batch effect adjustment, 
and genomic inflation by testing methods that were easy 
to implement from well-established and documented R 
packages. Finally, we provide evaluation guidelines for 
studies facing similar harmonization challenges.

Main text
Methods
Figure 1 shows a summary of the pre-processing pipeline 
and the data harmonization evaluations.

Data
Peripheral whole blood was collected prospectively 
from individuals enrolled in DAISY. Cases of T1D were 
frequency matched to controls, and DNA methylation 
generated on up to five prospective samples per subject 
[4]. The EPIC platform replaced the 450  K during data 

acquisition. There were 42/42 and 45/45 matched T1D 
cases/controls (corresponding to 184 and 211 unique 
arrays) for the 450 K and EPIC platforms, respectively.

Normalization and probe‑level QC
First, three established normalization and probe-level 
QC methods were evaluated (Fig.  1): subset-quantile 
within array normalization (SWAN, [9]), normal-expo-
nential using out-of-band probes (Noob, [10]) and sin-
gle-sample Noob (ssNoob,[11]). SWAN and ssNoob 
normalizations were performed within the minfi pack-
age [12], while Noob normalization was performed in 
the SeSAMe package [7]. We examined two detection 
above background methods: minfi’s default [12] and SeS-
AMe’s pooBAH [7] and coupled it to the normalization 
in the same R package. Filtering on probe-level QC was 
performed after each normalization prior to evaluation 
of platform effects and included removing probes with 
known SNPs in the probe sequence [13] as well as cross-
reactive probes [14]. See Jonhson et al. for full detail [4].

For evaluating normalization and probe-level QC pro-
cedures, we looked at the first 10 principal components 
(PCs) to determine if there was a large platform effect 
across components, as well as the three technical repli-
cate metrics mentioned below. For the PCA, all probes 
that passed QC were included, regardless if present or 
not on the other platform, excluding probes on chromo-
some X.

Twelve technical replicates were selected to be bal-
anced with respect to sex, age, and islet autoimmunity 
(IA) status. To examine this data we used three metrics: 
(1) a difference in methylation Beta value at the individ-
ual probe (Additional file 1: Eqn S1), (2) correlation of all 
probes across a single technical replicate pair (Additional 

Fig. 1  Pipeline Methods Considered. The four main pre-processesing steps are: 1. Normalization and probe QC, 2. Batch effect adjustment, 3. Extra 
probe filtering and 4. Genomic inflation adjustment. The various methods considered for each step is listed along with the evaluation(s) used to 
assess these methods
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file 1: Eqn S2) and (3) correlation of the technical repli-
cate pairs across a single probe (Eqn S3, see Additional 
file 1: Methods).

Batch effect adjustment
Second, we applied two different within platform batch 
effect methods: ComBat [15] and RUVm [16] (Fig.  1) 
in the sva (v3.30.0) and missMethyl (v1.16.0) packages 
respectively.

Additional probe filtering
Third, we explored supplemental probe filtering by 
removing low range probes (< 5% Beta) as suggested [8] 
and compared how well technical replicates correlated.

Statistical analysis
We performed a linear mixed model using T1D status to 
predict methylation (M-values) while adjusting for age 
and sex and using subject as a random effect using the R/
nlme package (v3.1–137) [17].

Genomic inflation
We corrected for genomic inflation using the R/BACON 
package (v1.10.1) [18]. In brief, BACON estimates an 
empirical null distribution using a Bayesian method to 
account for the bias and inflation of test-statistics specific 
to EWAS datasets.

Meta‑analysis
Stouffer’s meta-analysis method [19] combined the sta-
tistical results from the two different platforms. This 
method generates a single meta-analysis p-value for each 
probe, and accounts for consistent effect direction.

Results
For each of the processing Steps 1–4, we compared dif-
ferent options with a variety of data harmonization eval-
uation diagnostics (Fig. 1).

Normalization evaluation
First, we explored normalization of both datasets 
together using ssNoob (coupled with minfi probe QC), as 
recommended by Fortin [11]. After associating the first 
10 PCs with platform, we found the first and second PC 
had extremely high associations with platform and sex 
respectively (Fig. 2). Sex differences are expected to be a 
large contributor to methylation profiles as methylation 
is known to have a large role in female X-chromosome 
inactivation. Applying subsequent batch adjustment did 
not reduce the strong platform effect (Additional file  1: 
Table  S1), regardless of method applied. Therefore, we 
applied normalization procedures by each platform 
separately.

To explore the effect of SWAN or SeSAMe on har-
monization of platforms, we examined technical rep-
licates across platforms. Correlation across probes for 
each pair of technical replicates (Additional file  1: Eqn 
S2) was extremely high (> 0.98) for both methods. This 
is not surprising given the large amount of probes used 
to calculate each correlation, and similar to high correla-
tion between random pairs of samples (> 0.97). Individual 
probe correlations deemed much more informative (Eqn 
S3). We generated densities of probe-level correlations 
across the technical replicates as well as across random 
samples (Fig. 3). The distribution of the random sample 
correlations for both the SeSAMe and SWAN are cen-
tered around 0 and look more Gaussian compared to 

Fig. 2  Platform Effect. The 1st and 2nd principal components (PCs) from the ssNoob normalization are plotted with colors symbolizing both 
platform and sex. Red and blue dots signify the 450K platform while purple and green dots signify the EPIC data. Red and purple dots signifiy 
females and blue and green dots signify males. Percent variance explained by each PC is noted in parentheses
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Fig. 3  Correlation of Technical Replicates. Density plots of correlations across the platform technical replicates for each probe (n = 12, green) as 
well as a random subset of pairs for comparison (n = 12, purple) for the data normalized using A SeSAMe and B SWAN. The median correlation 
coefficient among technical replicates is both 0.41 in the SeSAMe and SWAN methods. The 1st and 3rd quartiles for technical replicates for SeSAMe 
and SWAN were (0.06, 0.72) and (0.11, 0.67) respectively
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the distributions for the technical replicate correlations, 
which look like a mixture of two or more distributions in 
addition to being centered around a higher correlation 
coefficient.

We examined the absolute differences in methyla-
tion on the probe-level (Additional file  1: Eqn S1) of 
the Beta value (% methylation) for each technical repli-
cate (Additional file  1: Figure S1). In all technical repli-
cate pairs, SeSAMe has a tighter distribution closer to 0 
and shown to harmonize better, while SWAN has higher 
absolute differences. We report the mean bias (and 95% 
CI) for the differences between platforms by normaliza-
tion type (Additional file 1: Table S2). Given these results, 
we moved forward with the SeSAMe normalization (see 
Additional file 1: for probe QC filtering numbers).

Batch effect adjustment
Even normalizing within each platform type, we still have 
technical batch effects to consider, since a variety of fac-
tors can add unwanted technical variation [20]. There-
fore, we examined within platform batch effect being 
defined as plate and row location combination. We per-
formed ComBat and RUVm to adjust for within platform 
batch effects on the SeSAMe dataset. Based on the PC 
analysis, ComBat performed slightly better, as the top 
PCs were less associated with batches defined as plate 
by rows (Additional file 1: Figure S2, [20]). Our results of 
ComBat outperforming other methods is consistent with 
Jiao and colleagues [21].

Probe filtering
Applying the Logue beta range filteer [8], removing 
probes with < 5% Beta methylation range, resulted in 
removing 15.8% (59,397) and 33.9% (225,342) of probes 
in the 450 K and EPIC platforms respectively. The mean 
beta values for the probes which were removed fell only 
on the extremes for both platforms (Additional file  1: 
Figure S3), while the probes which passed this criteria 
had mean beta values throughout the potential 0–100% 
methylation values. Additional considerations are sum-
marized in the Supplement.

Genomic inflation in statistical analysis
After statistical analysis, it’s important to consider the 
genomic inflation factor lambda (i.e., general inflation 
of test statistics due to population structure), which is 
the ratio of the median of the observed distribution of 
the test statistics to the expected median, and should be 
close to 1. In the 450 K platform, the SWAN normalized 
dataset resulted in an extreme genomic inflation whereas 
the EPIC was deflated (Additional file 1: Figure S6). How-
ever, genomic inflation was comparable between the plat-
forms for the SeSAMe normalized datasets. To account 

for any additional genomic inflation we applied BACON 
[18], which was developed to control for genomic infla-
tion specifically for EWAS. After this adjustment, the 
genomic inflation factor for the SeSAMe 450 K and EPIC 
datasets were 1.03 and 1.08 respectively.

To perform the meta-analysis, we only kept probes 
present in both the SeSAMe datasets (1,99,243 probes). 
Final results are reported by R. K. Johnson and colleagues 
[4]. This final pipeline as it gives comparable candidate 
probes to other DNA methylation papers in T1D [22–25].

Discussion
Pre-processing any ‘omics dataset including Illumina’s 
BeadChip array can have substantial effects on down-
stream analyses. The introduction of an updated array 
adds the additional hurdle of harmonizing more than 
one platform to leverage all available data. If possible, we 
recommend including technical replicates in the study 
design to aid in assessing the quality of pre-processing 
steps as it was key for our harmonization evaluation pro-
cess of the various methods. Additional file 1: Figure S7 
summarizes our recommended best practices based on 
the tested approaches. We realize new methods are con-
stantly evolving in this field, and this flow chart aims to 
help guide analysts in what decisions need to be made 
throughout this process.

There are special considerations regarding probe filter-
ing, which is performed at two stages. The first stage is 
based on low quality probes identified after normaliza-
tion, and the second stage is before statistical modeling 
based on removing non-varying probes. Other filtering 
criteria such as probes with both high variance and high 
differences in beta values between technical replicates 
should be considered. In the first probe filtering, the poo-
BAH method (part of SeSAMe pipeline) removed a high 
number of probes compared to SWAN, specifically those 
on sex chromosomes. Other normalization procedures, 
such as functional normalization [26], which utilize con-
trol probes were not reported, but may work well for 
some datasets. However, the resulting genomic inflation 
values were more consistent among the platforms and 
closer to one, which is desired. This suggests pooBAH 
correctly identifies germline and somatic deletions that 
would be causing this inflated signal. However, the use of 
pooBAH filtering on sex chromosomes should be consid-
ered with caution.

Another consideration is adjusting for cell type propor-
tion and for this specific analysis it is discussed in depth 
in Johnson et  al. 2020 [4]. There are conflicting view-
points for whether to include cell type adjustment [27, 
28], and should depend on the specific study design.

In addition to a meta-analysis, we explored an alterna-
tive approach, where data were pooled into one statistical 
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model and included a fixed covariate of platform and 
subsequently adjusted for genomic inflation afterward. In 
this study, results of the single model were qualitatively 
similar to the meta-analysis and provided little evidence 
to support one method over the other. We recommend 
that both approaches be considered, in addition to ran-
dom effect methods [29].

In summary, our evaluation methods relied on tech-
nical replicates, which we highly recommend. The har-
monization evaluation metrics on the technical replaces 
were used to compare methods at different steps, and 
can be used to evaluate other options as new methods 
are developed. We hope our guidelines aid others in their 
endeavors for performing analyses consisting of both 
450 K and EPIC platforms.

Limitations
Others have explored individual steps in this pipeline 
[8, 11], therefore we did not examine individual steps in 
depth using multiple datasets or simulations. The goal of 
this work was to evaluate the entirety of steps involved 
in a methylation processing pipeline based on data from 
both Illumina’s 450  K and EPIC platforms and how it 
affects harmonization. We do not claim that our recom-
mended pipeline will be best in all scenarios, but illus-
trate what factors need to be considered for selecting a 
pipeline with other datasets, and new methods as they 
are published.
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Type 1 diabetes; SWAN: Subset-quantile within array normalization; Noob: 
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IA: Islet autoimmunity; PC: Principal component.
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Additional file 1: Table S1. PC Association with Platform. Principal com-
ponent analysis was performed across the ssNoob normalized dataset 
(e.g. both the 450K and EPIC platforms normalized together) with and 
without batch effect adjustment using Combat. For the first 10 PCs, 
the percent variance explained and the p-value for representing the 
association between the PC and platform is reported. Associations with 
a p-value < 0.05 are highlighted in yellow. Figure S1. Technical Replicate 
Differences. Density plots of the difference in methylation (Beta value) 
between pairs of technical replicates for each platform (EPIC or 450K) for 
the two methods (SeSAMe in blue and SWAN in red). Each plot displays 
one of the twelve pairs of technical replicates. Figure S2. Batch Effect 
Adjustment. Heatmaps of the association between principal compo-
nents and batch for both the unadjusted raw normalized data, the RUVm 
adjusted data and ComBat adjusted data in both the A. 450K and B. EPIC 
platforms. Figure S3. Mean Beta value for probes with no variability. 
Histograms showing the mean Beta value for those probes which failed 
the range filter (Beta range < 0.05) are shown for the A. 450K and B. EPIC 
platforms. Histograms for the mean Beta value for those probes which 

passed the range filter (Beta range > 0.05) are shown for the C. 450 and 
D. EPIC platforms. Figure S4. Effect of extra filtering by probe variability 
on genomic distribution of probes. The proportion of probes on each 
chromosome is shown in the pre- and post- probe range filtering datasets 
in red and blue respectively (filtered probes with a Beta range < 0.05) for 
both the A. 450 K and B. EPIC platforms. Figure S5. Technical Replicate 
Correlation and Beta Range. Probe correlation coefficients from the tech-
nical replicates within the 450 K (Eq-2) is plotted against the methylation 
Beta range. Figure S6. Genomic inflation factor across different datasets. 
The qq-plots for the different datasets are shown for A. SWAN normal-
ized 450K (lambda = 3.02), B. SWAN normalized EPIC (lambda = 0.83)., 
C. SeSAMe 450K (lambda = 0.93) and D. SeSAMe EPIC (lambda = 0.98). 
The blue dots are the observed p-values, while the black line shows the 
expected distribution these p-values should follow. Figure S7. Final meta-
analysis pipeline. The final recommendations for a meta-analysis using the 
two Illumina methylation platforms. The blue box represents the raw data, 
the orange boxes represent each processing step, the gray boxes report 
how many probes are filtered out in each step and the green boxes are 
the final methylation candidates.
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