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Abstract 

Objectives:  The assembly of fungal genomes using short-reads is challenged by long repetitive and low GC regions. 
However, long-read sequencing technologies, such as PacBio and Oxford Nanopore, are able to overcome many prob-
lematic regions, thereby providing an opportunity to improve fragmented genome assemblies derived from short 
reads only. Here, a necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr) isolate 134 (Ptr134), which causes 
tan spot disease on wheat, was sequenced on a MinION using Oxford Nanopore Technologies (ONT), to improve on 
a previous Illumina short-read genome assembly and provide a more complete genome resource for pan-genomic 
analyses of Ptr.

Results:  The genome of Ptr134 sequenced on a MinION using ONT was assembled into 28 contiguous sequences 
with a total length of 40.79 Mb and GC content of 50.81%. The long-read assembly provided 6.79 Mb of new 
sequence and 2846 extra annotated protein coding genes as compared to the previous short-read assembly. This 
improved genome sequence represents near complete chromosomes, an important resource for large scale and pan 
genomic comparative analyses.
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Introduction
The necrotrophic fungal pathogen Pyrenophora tritici-
repentis (Ptr) is the causal agent of tan (or yellow) spot a 
major disease of wheat (Triticum aestivum) [1]. A num-
ber of genomic sequencing projects have been under-
taken for Ptr [2–6], the majority derived solely from 
Illumina sequence. Many of these short-read assemblies 
are incomplete as many genomic regions in Ptr contain 
long repetitive regions and identical gene copies that are 
not resolved by short reads [5]. We therefore undertook 

the currently more affordable Oxford Nanopore Tech-
nologies (ONT) long-read sequencing of an Australian 
Ptr isolate 134 (Ptr134) that was previously sequenced by 
short read (150 bp paired end) Illumina technology [3].

Main text
Methods
Isolate collection and sequencing
The pathogenic isolate Ptr134 was isolated from tan spot 
infected leaves collected from Queensland, Australia in 
2001. Ptr134 was cultured in  vitro from a single spore 
[7]. Ptr134 genomic DNA was extracted from 3-day old 
mycelia grown in  vitro in Fries 3 liquid medium, using 
DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). DNA 
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was further treated with phenol/chloroform extraction, 
followed by precipitation with sodium acetate and etha-
nol, and finally resuspension in TE buffer [3]. The Ptr134 
genomic DNA was sequenced using a MinION (MIN-
101B) Oxford Nanopore StarterPack, R9 (FLO-MINSP6) 
flow cell, flow cell priming kit (XP-FLP001) and Rapid 
Sequencing Kit SQK-RAD004, following manufacturers 
(Oxford Nanopore Technologies, Oxford, UK) protocol. 
ONT sequencing after 24 h yielded 4,37,865 passed long 
reads with a total length of 2.6 Gb (65 × genome cover-
age), base called in real time using MinKNOW version 
127.0.0.1 software on a MacBook Pro (version 10.13.6, 
2.6  GHz Intel Core i7 processor and 16  GB 2400  MHz 
DDR4 memory) to a 1  TB Seagate Backup Plus Slim 
portable storage device (model SRC0VN2), at the Cen-
tre for Crop Disease and Management, Perth, Western 
Australia. ONT sequence data was based called in real 
time using the MinKNOW Fast basecalling model from 
Fast5 into FastQ file format. Raw reads were classed as 
passed by MinKNOW based on the average read qual-
ity score > 7. The Ptr134 genome was also previously 
sequenced via Illumina HiSeq stranded (150  bp paired 
end reads) by Novogene Co., Ltd (Hong Kong) to yield 
3.2  Gb at 80× coverage [3]. The median and maximum 
read lengths obtained from the MinION were 4253  bp 
and 91,723 bp, respectively.

Genome assembly of Ptr134
The passed FastQ data was error-corrected and assem-
bled using linux-amd64 Canu 1.8 software [8] guided 
by a genome size of 40 Mb and option for raw nanopore 
data. Illumina PE reads were quality trimmed for ran-
dom hexamer primers on the 5′ read end using Trimmo-
matic v0.22 [9]. The high quality trimmed Illumina reads 
were aligned to the Canu genome assembly using BWA 
0.7.14-r1138 [10] and filtered for concordant PE read 
alignments using samtools 0.1.19-96b5f2294a [11]. The 
genome assembly was then corrected with the high qual-
ity Illumina alignments using Pilon 1.23 [12] to generate a 
final polished Ptr134 sequence assembly with 2407 SNPs, 
1,64,237 small insertions (totalling 208,176 bases) and 
123 small deletions (totalling 151 bases) corrected. Post 
Canu and Pilon error corrections, the average weighted 
Phred score base qualities for Ptr134 ONT sequence and 
a previously PacBio RSII sequenced M4 isolate [3] were 
36 and 37, respectively.

Ptr134 was then aligned to M4 [3] scaffolded chromo-
somes using NUCmer [13] v3.1 (-maxmatch -coords).

Gene prediction and functional annotation
Ptr134 Illumina RNA-seq data [3] was aligned to the 
Ptr134 nanopore assembled genome using TopHat 
v2.0.12 [14] (-N 2 -i 10 -I 5000 -p 16 –no-discord- ant 

–no-mixed –report-secondary-alignments –micro- 
exon-search –library-type fr-firststrand) for supporting 
ab  initio gene predictions by CodingQuarry v1.2 [15] in 
pathogen mode (PM). Ab  initio gene predictions were 
also made with GeneMark-ES v4.33 [16].

Pt-1C-BFP [2] and M4 reference proteins [3] were 
aligned to Ptr134 using Exonerate v2.2.0 [17] (–showvul-
gar no –showalignment no –minintron 10 –maxintron 
3000) in mode protein2genome. The ab  initio gene pre-
dictions and exonerate alignments were then combined 
using EvidenceModeller v1.1.1 [18] with a minimum 
intron length of 10 bp and weightings of CodingQuarry:1, 
GeneMark.hmm:1, protein exonerate:2.

Gene annotations were assigned by BLASTX [19, 
20] v2.3.0 + searches across NCBI RefSeq and NR 
(taxon = Ascomycota) (February 2020) databases and 
RPSTBLASTN v2.7.1 + of COG, Pfam, Smart and CDD 
domain databases (February 2020). Final gene annota-
tions were summarised by AutoFACT v3.4 [21]. BUSCO 
[22] v5.1.2 analysis was conducted on predicted protein 
sequences using the lineage for pleosporales_odb10.

The ONT Ptr134 annotated genome has been depos-
ited with DDBJ/ENA/GenBank under the updated acces-
sion MVBF02000000.

Results and discussion
Genome assembly and annotation of Ptr134
The Ptr134 genome assembled into 28 contiguous 
sequences with of total length 40.79  Mb and GC con-
tent of 50.81% (Table  1). Ptr134 ONT (Version 2) con-
tig length statistics showed marked improvements in 
comparison to the short-read assembly (Version 1) [3]. 
In comparison to the previous short read assembly, the 
long-read assembly provided 6.79 Mb of new sequence. A 
total of 13,918 protein coding genes were also predicted 
for the Ptr134 ONT assembly, 2,846 more than the previ-
ous short read assembly (Table 1). Although there was no 
improvement in the BUSCO scores for predicted protein 
coding genes the new predictions are possible pathogen 
specific genes found in the more complex regions which 
are harder to assemble with short reads. The ONT Ptr134 
annotated genome has been deposited with DDBJ/ENA/
GenBank under the updated accession MVBF02000000 
(Table 1).

The improved Ptr134 genome assembly contains many 
near complete chromosomes (chromosomes 2, 4, 5, 6, 
8, and 9) (Fig.  1). Whole genome alignment of Ptr134 
version 2 (Fig. 1A) and Ptr134 version 1 [3] (Fig. 1B) to 
M4 [3] (PacBio RSII) showed few large-scale rearrange-
ments. However, distinct smaller rearrangements were 
more clearly observed in the ONT assembly, as com-
pared to the Illumina assembly, in particular a small 
central sequence inversion in chromosome 5 (Fig.  1A). 
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Furthermore, sequence breaks in Ptr134 relative to 
M4 chromosomes 1, 3, 7 and 10 reflect sequence varia-
tions between the two isolates. In particular, the Ptr134 
sequence break relative to M4 chromosome 10 coincides 
with the chromosome 10 and 11 fusion site revealed pre-
viously by optical mapping of M4 [3].

This is the first ONT sequenced, assembled and anno-
tated genome for a Ptr race 1 isolate. The improved 
ONT genome assembly of Ptr134, over the former Illu-
mina assembly, will enable the better characterization 
of important genes involved in pathogenicity that are 
often contained in highly complex genomic regions [5], 

Table 1  Pyrenophora tritici-repentis race 1 isolate Ptr134 Oxford Nanopore genome information and assembly statistics compared to 
race 1 isolate M4 and version 1 short read assembly of Ptr134

a Previously published genome assemblies
b Benchmarking Universal Single-Copy Orthologs (BUSCO)

Ptr134 Version2 aM4 aPtr134 Version1

Isolate information

 Sequencing Platform Oxford Nanopore PacBio RSII and BioNano Optical Map Illumina (150 bp paired end)

 Genome accession MVBF02000000 NQIK00000000 MVBF01000000

 Collection site Queensland, Australia Western Australia, Australia Queensland, Australia

 Collection year 2001 2009 2001

 Date sequenced 2019 2017 2017

Contig assembly statistics

 Total length (Mb) 40.7 40.9 34.0

 Number 28 51 3579

 N50 (Mb) 2.687 2.930 0.064

 Mean (Kb) 1456 802 9.5

 Max (Mb) 6.50 5.60 0.29

 GC % 50.1 50.7 50.8

Predicted genes

 Protein coding genes 13,918 13,797 11,072

 % Complete bBUSCO 94.3 92.1 94.3

Fig. 1  A Ptr134 Oxford Nanopore Technology contiguous genome sequences (vertical axis) aligned in a dot matrix plot to M4 assembled 
chromosomes (horizontal axis). B Ptr134 Illumina contiguous genome sequences (vertical axis) aligned in a dot matrix plot against M4 assembled 
chromosomes (horizontal axis)
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and contribute to improved pan genomic analyses of this 
important fungal pathogen.

We demonstrate that ONT is a viable option for 
sequencing less fragmented and near complete genome 
assemblies for fungal species. Using these methods 
researchers can sequence and assemble ‘in house’ isolates 
of interest to create quality reference genomes.

Limitations
All methods have been made as consistent as possible for 
comparative analyses, this analysis has used databases, 
software and PacBio sequencing versions currently avail-
able, which may be updated in the future. The compari-
son of the two Australian long-read assemblies is only an 
indication of potential genome stability in Australia.
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