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Propionic acid disrupts endocytosis, cell 
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Abstract 

Objective:  We previously identified propionic acid as a microbially-produced volatile organic compound with fun-
gicidal activity against several pathogenic fungi. The purpose of this work is to better understand how propionic acid 
affects fungi by examining some of the effects of this compound on the yeast cell.

Results:  We show that propionic acid causes a dramatic increase in the uptake of lucifer yellow in yeast cells, which 
is consistent with enhanced endocytosis. Additionally, using a propidium iodide assay, we show that propionic acid 
treatment causes a significant increase in the proportion of yeast cells in G1 and a significant decrease in the propor-
tion of cells in G2, suggesting that propionic acid causes a cell cycle arrest in yeast. Finally, we show that the reduction 
of MTT is attenuated in yeast cells treated with propionic acid, indicating that propionic acid disrupts cellular respi-
ration. Understanding the effects of propionic acid on the yeast cell may aid in assessing the broader utility of this 
compound.
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Introduction
Propionic acid is a weak organic acid that is widely used 
as a food preservative and generally considered to be safe 
by regulatory bodies in Canada [1], the United States 
[2], and the European Union [3]. Propionic acid can be 
produced by microbes and is fungicidal towards the bat 
pathogen Pseudogymnoascus destructans [4] and sev-
eral plant pathogenic fungi (Additional file 1: Figure S1). 
A volatile organic compound like propionic acid holds 
promise as a fumigant for controlling fungal pathogens in 
agricultural soils [e.g. 5], bat hibernacula [6], and other 
complex and textured environments.

In this work, we examine effects of propionic acid 
on baker’s yeast (Saccharomyces cerevisiae) to better 
understand potential applications for this compound. 
We examined pathways that were enriched in chemi-
cal-genetic profiles amongst highly sensitive deletion 
mutants (unpublished observations) and show that 

propionic acid affects evolutionarily conserved processes 
in yeast including endocytosis, the cell cycle, and cellular 
respiration.

Main text
All assays used S. cerevisiae strain S288C and sub-inhib-
itory concentrations of liquid propionic acid. To ensure 
that the observed effects of propionic acid were not 
strictly due to growth inhibition, we used the antifungal 
aldehyde nonanal as a positive control. For both propi-
onic acid and nonanal, a sub-inhibitory concentration 
(4.7  μl  ml−1 and 0.5  μl  ml−1, respectively) was selected 
that reduced yeast cell survival by 20% compared to the 
no-treatment control. For each mode of action assay, 
technical replicates were averaged and mean values of 
each biological replicate were used for statistical analysis 
in R [7].
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Propionic acid exposure increases endocytosis in yeast 
cells
We examined yeast cells exposed to propionic acid for 
uptake of lucifer yellow, a hydrophilic fluorescent dye 
that enters yeast cells by endocytosis [8–10]. S. cerevisiae 
was grown overnight in YPD (yeast, peptone, d-glucose) 
media and then adjusted to an OD600 of 0.80 before 100 µl 
aliquots of cell suspension were mixed with 100 µl buffer 
(12.5  mM sodium phosphate, 2.5  mM sodium fluoride) 
and treated with 0.95 µl propionic acid, 0.1 µl nonanal, or 
a no-treatment control. Cell suspensions were then incu-
bated at 30 °C for 30 min before adding lucifer yellow to a 
final concentration of 4 mg ml−1 and incubating at 30 °C 
for an additional 3 h. Cells were then washed three times 
and resuspended in buffer before measuring fluorescence 
using a BD Accuri C6 flow cytometer. Three independent 
experiments were performed, each with three replicates 
and a minimum of 10,000 cells counted per replicate. 
Cells were also photographed using a Zeiss Axioplan 2 
imaging microscope with an AxioCam HRm camera.

There was a significant effect of compound treat-
ment  on cell fluorescence (one-way ANOVA, 
F(2,6) = 136.36, p < 0.001; Fig.  1A). Lucifer yellow fluo-
rescence of cells treated with propionic acid was signifi-
cantly greater than that of cells treated with nonanal or 
the negative control (Tukey test, p < 0.001 for both com-
parisons), while the fluorescence of cells in the nonanal 
and negative control treatments did not differ signifi-
cantly (Tukey test, p = 0.56). This indicates that propionic 
acid increases endocytosis in yeast cells, and this was fur-
ther supported by fluorescence microscopy (Fig. 1B).

Increased endocytosis may be a response to membrane 
damage with exposure to weak acids such as propionic 
acid [11]. Damaged membrane proteins can activate 
quality control mechanisms that cause their endocyto-
sis and degradation in the multivesicular body pathway 
[12–15]. Interestingly, genes involved in protein catabo-
lism through the multivesicular body pathway contribute 
to propionic acid resistance [16], suggesting that endocy-
tosis of damaged surface proteins may be part of an adap-
tive response to propionic acid.

Propionic acid disrupts the yeast cell cycle
We assessed if propionic acid affects cell cycle progres-
sion by staining and measuring DNA content, and then 
calculating the percentage of cells in G1, S, and G2 phases 
[17]. Yeast cells were grown overnight as described above 
before 200  µl aliquots of cell suspension were pipetted 
into 1.5  ml epitubes with 0.95  µl propionic acid, 0.1  µl 
nonanal, or a no-compound control, and incubated 
at 30  °C for 3 h. Cells were then pelleted by centrifuga-
tion and fixed by resuspending in 500 µl of 70% ethanol. 

Cells were then incubated at 22  °C for 2.5  h and resus-
pended in 500  µl phosphate-buffered saline (PBS) for 
10 min before pelleting and resuspending in 100 µl PBS 
with 1 mg ml−1 RNase A. Cells were incubated overnight 
at 37  °C and then pelleted and resuspended in 100  µl 
PBS with 50  µg  ml−1 propidium iodide before incubat-
ing in the dark at 37 °C for 1 h. Propidium iodide stain-
ing was analysed using a BD Accuri C6 flow cytometer 
and the percentage of cells in each phase of the cell cycle 
was calculated using ModFit LT (Verity Software House, 
Topsham, Maine). Three independent experiments were 
conducted, each with three replicates and 10,000 cells 
counted per replicate.

As illustrated in Fig.  2, one-way ANOVAs conducted 
for each cell cycle phase showed a significant effect 
of compound treatment on the percentage of cells in 
G1 (F(2,6) = 19.91; p = 0.002) and G2 (F(2,6) = 101.60; 
p < 0.001), but not S-phase (F(2,6) = 1.97; p = 0.22). Spe-
cifically, post-hoc Tukey tests showed that compared to 
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Fig. 1  Lucifer yellow uptake in yeast cells exposed to propionic 
acid. Yeast cells were treated with propionic acid, nonanal, or 
a carrier control in the presence of lucifer yellow. A shows the 
mean fluorescence of yeast cells with standard error bars (n = 3). 
Different letters indicate significant differences (p < 0.001). B shows 
micrographs in brightfield (top) and fluorescence (bottom) channels 
that contrast lucifer yellow uptake in yeast cells in a no-treatment 
negative control (left) compared to treatment with propionic acid 
(right). The white scale bar represents 25 µm
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nonanal-treated cells and negative control cells, propi-
onic acid-treated cells had a greater percentage of cells 
in G1 (p < 0.003) and a lower percentage of cells in G2 
(p < 0.001), whereas the percentage of cells in S-phase 
was not significantly different for any treatments (p > 0.2). 
The percentage of cells in each phase of the cell cycle did 
not differ significantly between the nonanal and negative 
control treatments (p > 0.65 for all comparisons).

Together, these results indicate that propionic acid 
causes a G1 or S-phase arrest, which are difficult to 
distinguish without detailed examination [18]. G1 or 
S-phase arrests can be due to small cell size, DNA dam-
age, and DNA replication stress [19–21], as well as mem-
brane permeabilization [22]. To our knowledge, this is 
the first report indicating that propionic acid perturbs 
the cell cycle in fungi.

Propionic acid inhibits cellular respiration
We tested if propionic acid affects cellular respiration by 
measuring the reduction of MTT (3-(4,5-dimethyl-
2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) [23, 
24], which is converted to a purple formazan salt by 
NADH-dependent reactions in metabolically active cells 
[25]. Yeast cells were grown overnight in YPD, washed 
twice, and resuspended in sterile distilled water. Cells 
were incubated at 22  °C for approximately 10  h, resus-
pended at an OD600 of 0.80 in YPD and 150  µl aliquots 
were placed into a microtiter plate with 15 µl of 2.89 mM 
MTT, 10 µl 0.19 mM phenazine methosulfate, and 25 µl 
10% Triton X-100, before adding 0.95 µl propionic acid, 
0.1 µl nonanal, or a carrier control. The microtiter plate 

was sealed with Parafilm and placed into a BioTek Instru-
ments Cytation 5 microtiter plate reader set to 30 °C with 
continuous shaking (282 double orbital cycles per min-
ute). We conducted three independent experimental rep-
licates, each with technical replicates comprising two 
cell-free controls, five propionic acid treatments, five 
nonanal growth inhibition controls, and five no-inhibitor 
controls. Absorbance values at 570 and 660  nm were 
measured every 5  min for 9  h to account for MTT 
absorbance and cell growth, respectively. To normalize 
for growth and compound absorbance, an MTT reduc-
tion score was calculated at each time point as 
A570 exp .−A570cont.

A660 exp .
 where A570 exp. and A660 exp. are the 

absorbances of the cell suspension, and A570 cont. is the 
absorbance of the cell-free suspension.

There was a significant effect of compound treatment 
on the reduction of MTT at 9  h (one-way ANOVA, 
F(2,6) = 7.50, p = 0.02; Fig. 3), such that the MTT reduc-
tion score in cells treated with propionic acid was sig-
nificantly lower than in cells in the no-treatment control 
(Tukey test, p = 0.03) and the nonanal control (Tukey 
test, p = 0.05). The reduction of MTT in the no-treatment 
control and nonanal growth-inhibition control was very 
similar in both endpoint reduction (Tukey test, p = 0.92) 
and kinetics, suggesting that the effects of propionic acid 
are not simply due to growth inhibition. The kinetics of 
the MTT assay with propionic acid suggest that this com-
pound has an inhibitory effect within 2–3 h of exposure, 
consistent with our previous accounts of time for propi-
onic acid to inhibit P. destructans, the causal agent of bat 
white-nose syndrome [6].
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Fig. 2  Cell cycle distributions in yeast cells treated with propionic 
acid. Cells were exposed to propionic acid, nonanal, or a 
no-treatment control before staining with propidium iodide to assess 
DNA content by flow cytometry. Percentage of cells in each cell 
cycle phase was calculated using ModFit LT. Error bars show standard 
error (n = 3) and letters show significant differences (p < 0.01) for the 
proportion of cells in G1 (a and b) and G2 (y and z)
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Fig. 3  Effect of propionic acid on yeast reduction of MTT. Yeast cells 
were exposed to propionic acid, nonanal, or a no-compound control, 
and the reduction of MTT was monitored spectrophotometrically for 
9 h. Mean MTT reduction scores are plotted with standard error bars 
(n = 3)
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Propionic acid has been shown to indirectly inhibit the 
pyruvate dehydrogenase complex [26], which links gly-
colysis and the citric acid cycle by converting pyruvate 
into acetyl-CoA. Our results are consistent with this, as 
inhibition of pyruvate dehydrogenase would decrease the 
generation of NADH necessary to reduce MTT. How-
ever, it is worth noting that the reduction of MTT in the 
propionic acid no-cell control was lower than in all other 
no-cell conditions (unpublished observations). This was 
accounted for in the calculated MTT reduction score, but 
it suggests that propionic acid interferes with non-enzy-
matic background reduction of MTT.

Conclusions
In this work, we used a yeast model to show that exposure 
to sub-inhibitory concentrations of propionic acid leads 
to a dramatic increase in endocytosis, changes to the cell 
cycle, and a disruption of cellular respiration. Previous 
research has shown that propionic acid also affects mem-
brane permeability and acidifies the cytoplasm [27–29]; 
but see [16], causes oxidative stress and apoptosis [30]; 
but see [31], and affects glucose metabolism [26]. This 
range of effects of propionic acid on the cell suggests that 
the compound may target a central regulator of cellular 
homeostasis, or several cellular processes simultaneously.

Further understanding the cellular effects of propionic 
acid may be useful in identifying other applications and 
predicting off-target effects. For example, our results sug-
gest that subinhibitory concentrations of propionic acid 
could be used as an inducer of endocytosis for research 
purposes or to enhance uptake (synergist) of other drugs. 
Considering off-target effects, propionic acid is generally 
considered to be safe for human use [1–3] and has low 
acute oral toxicity in rats (LD50 351–3470 mg kg−1 body 
weight) and dogs (LD50 > 1832 mg kg−1 body weight with 
repeated dietary exposure); exposure generally causes 
inflammation and irritation, rather than systemic toxicity 
[32]. Nevertheless, we show that the compound clearly 
disrupts the yeast cell cycle, which is highly conserved 
among eukaryotes. This adds to evidence from studies 
with plants [e.g. 33] and human cell cultures [e.g. 34] that 
propionic acid causes cell cycle arrest.

Limitations
Future research should test whether the observed effects 
of propionic acid on yeast also occur in other fungi and 
eukaryotes in general. Clearly, the biochemical processes 
that we examined are largely conserved, and suggest that 
off-target effects could occur with this common food pre-
servative. Future research should further build upon our 
observations to determine the mechanism(s) of action of 
propionic acid.
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