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RESEARCH NOTE

Accurate numerical scheme for singularly 
perturbed parabolic delay differential equation
Mesfin Mekuria Woldaregay1*   and Gemechis File Duressa2   

Abstract 

Objectives:  Numerical treatment of singularly perturbed parabolic delay differential equation is considered. Solu-
tion of the equation exhibits a boundary layer, which makes it difficult for numerical computation. Accurate numeri-
cal scheme is proposed using θ-method in time discretization and non-standard finite difference method in space 
discretization.

Result:  Stability and uniform convergence of the proposed scheme is investigated. The scheme is uniformly conver-
gent with linear order of convergence before Richardson extrapolation and second order convergent after Richardson 
extrapolation. Numerical examples are considered to validate the theoretical findings.

Keywords:  Boundary layer, Non-standard finite difference, Singularly perturbed

Mathematics Subject Classification:  Primary 65M06, 65M12, Secondary 65M15

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Singularly perturbed delay differential equation (SPDDE) 
is a differential equation in which its highest order deriv-
ative term is multiplied by small perturbation param-
eter and involving at least one delay term. Such type of 
equations have variety of applications in modelling of 
neuronal variability [15], in control theory [3], in descrip-
tion of human pupil-light reflex [14] and so on. Recently, 
a number of papers have been published on numerical 
treatment of time dependent singularly perturbed differ-
ential difference equations. In papers [1, 2, 4–8, 10–13] 
and [17] different authors have developed numerical 
scheme for treating SPDDE. The schemes in above listed 
papers have only linear order of convergence. In this 
paper, we construct second order uniformly convergent 
numerical scheme using non-standard FDM with Rich-
ardson extrapolation.

Notation: In this paper, the symbols C ,C1 and C2 
denotes a positive constant independent of the perturba-
tion parameter and number of mesh points. The norm ‖.‖ 
denotes the maximum norm.

Considered equation
We consider a singularly perturbed parabolic delay differ-
ential equation of the form

on the domain D = �×� = (0, 1)× (0,T ] for some 
fixed number T > 0 with initial and interval-boundary 
conditions

where 0 < ε ≪ 1 is singular perturbation param-
eter and δ is delay satisfying δ < ε . The functions 
a(x), b(x), f (x, t),u0(x),φ(x, t) and ψ(1, t) are assumed to 
be sufficiently smooth and bounded with b(x) ≥ b∗ > 0, 
for some constant b∗.

(1)∂u

∂t
− ε

∂2u

∂x2
+ a(x)

∂u

∂x
(x − δ, t)+ b(x)u(x − δ, t) = f (x, t),

(2)

u(x, 0) = u0(x), x ∈ �̄,
u(x, t) = φ(x, t), (x, t) ∈ [−δ, 0] ×�, u(1, t) = ψ(1, t), t ∈ �,
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Solution of (1)–(2) exhibits boundary layer [4] and posi-
tion of the layer depends on the conditions: If a(x) < 0 left 
layer exist. If a(x) > 0 right layer exist.

Some preliminary of the analytical solution
For the case δ < ε , using Taylor’s series approximation for 
the terms containing delay u(x − δ, t) and ux(x − δ, t) is 
valid [16]. Since, we assumed δ < ε , we approximate (1)–
(2) by

with initial and boundary conditions

where cε(x) = ε − δ2

2 b(x)+ δa(x) and 
p(x) = a(x)− δb(x).

For small values of δ , (1)–(2) and (3)–(4) 
are asymptotically equivalent. We assume 
0 < cε(x) ≤ ε2 − δ2

2 b
∗ + δa∗ = cε , where b∗ and a∗ 

are the lower bound for b(x) and a(x) respectively. We 
assume also p(x) ≥ p∗ > 0, implies occurrence of bound-
ary layer near x = 1.

Lemma 2.1  ([6],  Theorem  2.1) The derivatives of the 
solution u(x, t) of (3)–(4) is bounded as

where C a positive constant independent of the parameter 
cε .

Numerical scheme
Temporal semi‑discretization
We sub-divide the time domain [0,  T] into M inter-
vals as t0 = 0, tj = j�t, j = 0, 1, 2, . . . ,M − 1 , where 
�t = T/(M − 1) . We use θ—method for semi-discretizing 
(3)–(4). In general, stable numerical scheme is obtained 
for 12 ≤ θ ≤ 1 . In case θ = 1

2 it becomes Crank Nicolson 
method which is second order convergent. In this discre-
tization, for each j = 0, 1, 2, . . . ,M − 1 we obtain a system 
of BVPs

(3)∂u

∂t
− cε(x)

∂2u

∂x2
+ p(x)

∂u

∂x
+ b(x)u(x, t) = f (x, t),

(4)u(x, 0) = u0(x), x ∈ �̄,

u(0, t) = φ(0, t), t ∈ �̄, u(1, t) = ψ(1, t), t ∈ �̄,

(5)
∣

∣

∣

∣

∂ i∂ ju(x, t)

∂xi∂tj

∣

∣

∣

∣

≤ C
(

1+ c−i
ε e−p∗(1−x)/cε

)

, 0 ≤ i ≤ 4, 0 ≤ j ≤ 2,

(6)

(1+�tθL�t)Uj+1(x)

= (θ − 1)�tL�tUj(x)+�t[θ f (x, tj+1)+ (1− θ)f (x, tj)],

where

with the boundary conditions

Lemma 3.1  (Global error estimate.) The global error 
estimate up to tj+1 time step is given by

Spatial discretization
Exact finite difference
To construct exact finite difference scheme, we follow the 
procedure in [9]. Consider the constant coefficient homo-
geneous differential equations of the form

Equation (9) has two independent solutions namely 
exp(�1x) and exp(�2x) where �1,2 =

−p∗±
√

(p∗)2+4cεb
−2cε

.

Let xi = x0 + ih, i = 1, 2, . . . ,N , x0 = 0, xN = 1, h =
1

N
 

where N is the number of mesh intervals. We denote 
the approximate solution of u(x) at mesh point xi by Ui . 
Our main objective is to calculate a difference equa-
tion which has the same general solution as the differ-
ential equation in (9) has at the mesh point xi given by 
Ui = A1 exp(�1xi)+ A2 exp(�2xi) . Using the theory of 
difference equations for second order linear difference 
equations in [9], we obtain

L�tUj+1(x) = −cε
d2

dx2
Uj+1(x)+ p(x)

d

dx

Uj+1(x)+ b(x)Uj+1(x),

(7)Uj+1(0) = φ(0, tj+1), Uj+1(1) = ψ(1, tj+1).

(8)

∥

∥Ej+1

∥

∥ ≤

{

C1(�t), 1
2 < θ ≤ 1,

C2(�t)2, θ = 1
2 ,

, ∀j = 1, 2, . . . ,M − 1.

(9)−cε
d2u(x)

dx2
+ p∗

du(x)

dx
+ b∗u(x) = 0

(10)−cε
d2u(x)

dx2
+ p∗

du(x)

dx
= 0,

(11)

exp

(

p∗h

2cε

)

Ui−1 − 2 cosh

(

h
√

(p∗)2 + 4cεb∗

2cε

)

Ui

+ exp

(

−
p∗h

2cε

)

Ui+1 = 0
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is an exact difference scheme for (9). For ε → 0 , after 
arithmetic adjustment, we obtain

From (12) the denominator function for second deriva-
tive discretization is γ 2 =

hcε
p∗

(

exp
(

hp∗

cε

)

− 1
)

 . For varia-
ble coefficient equation, γ 2 can be written as

Discrete scheme
The spatial domain �̄ = [0, 1] , discretized 
with uniform mesh length �x = h such that 
�N = {xi = x0 + ih, i = 1, 2, . . . ,N − 1, x0 = 0, xN = 1, h = 1

N
} where 

N is the number of mesh intervals. Using the discretiza-
tion in (12) into the scheme in (6), we obtain

where

and gi,j+1 = −(1− θ)�tLh,�tUi,j +�t[θ f (xi , tj+1)+ (1− θ)f (xi , tj)].

Stability analysis and uniform convergence
We need to show that the scheme in (14) satisfies the dis-
crete maximum principle, uniform stability estimates and 
uniform convergence.

Lemma 3.2  (Discrete maximum principle.) Let Ui,j+1 
be any mesh function satisfying U0,j+1 ≥ 0, UN ,j+1 ≥ 0. 
Then, (1+�tθLh,�t)Ui,j+1 ≥ 0, i = 1, 2, . . . ,N − 1 
implies that Ui,j+1 ≥ 0, ∀i = 0, 1, . . . ,N .

Proof  Suppose there exist k ∈ {0, 1, . . . ,N } such 
that Uk ,j+1 = min0≤i≤N Ui,j+1 < 0 , which implies 
k  = 0,N  . Also we assume that Uk+1,j+1 − Uk ,j+1 > 0 
and Uk ,j+1 −Uk−1,j+1 < 0 . Using the assumptions 
made above, we obtain (1+�tθLh,�t)Uk ,j+1 < 0 , for 
k = 1, 2, 3, . . . ,N − 1 . Thus the supposition Ui,j+1 < 0 , 
for i = 0, 1, . . . ,N  is wrong. Hence, we obtain 
Ui,j+1 ≥ 0, ∀i = 0, 1, . . . ,N . 

(12)−cε
Ui−1 − 2Ui +Ui+1

hcε
p∗

(

exp(
p∗h
cε

)− 1
) + p∗

Ui − Ui−1

h
= 0.

(13)γ 2
i =

hcε

p(xi)

(

exp

(

hp(xi)

cε

)

− 1

)

.

(14)
(1+�tθLh,�t)Ui,j+1 = gi,j+1, i = 1, 2, . . . ,N − 1,

Lh,�tUi,j+1 = −cε
Ui−1,j+1 − 2Ui,j+1 + Ui+1,j+1

γ 2
i

+ p(xi)
Ui,j+1 −Ui−1,j+1

h
+ b(xi)Ui,j+1

�

Lemma 3.3  (Uniform stability estimate.) Solution Ui,j+1 
of the discrete scheme in ( 14) satisfies the bound

Proof  Let us construct a barrier func-
tions as π±

i,j+1
=

∥

∥gi,j+1

∥

∥(1+�tθb∗)−1

+max
{
∣

∣φ(0, tj+1)
∣

∣,
∣

∣ψ(1, tj+1)
∣

∣

}

± Ui,j+1 . We 
can easily show that π±

0,j+1 ≥ 0 , π±
N ,j+1 ≥ 0 and 

(1+�tθLh,�t)π±
i,j+1 ≥ 0. By the discrete maximum prin-

ciple, we obtain π±
i,j+1 ≥ 0, ∀i = 0, 1, 2, . . . ,N  . 

Let us define the differences opera-
tors in space as D+Vj+1(xi) =

Vj+1(xi+1)−Vj+1(xi)

h
 , 

D−Vj+1(xi) =
Vj+1(xi)−Vj+1(xi−1)

h
 and 

D+D−Vj+1(xi) =
(D+−D−)Vj+1(xi)

h
.

Theorem 3.1  The solution Ui,j+1 of (6) satisfies the trun-
cation error bound

Proof  We consider the truncation error

The estimate cε
∣

∣

∣

∣

h2

γ 2
i

− 1

∣

∣

∣

∣

≤ Ch used in the above expres-

sion is proved in [1]. Using bound of the derivatives of 
the solution in Lemma 2.1 and since c3ε ≤ c2ε , we obtain

(15)

∥

∥Ui,j+1

∥

∥ ≤
∥

∥gi,j+1

∥

∥(1+�tθb∗)−1

+max
{∣

∣φ(0, tj+1)
∣

∣,
∣

∣ψ(1, tj+1)
∣

∣

}

.

�

(16)

∣

∣

∣
(1+�tθLh,�t)

(

Uj+1(xi)− Ui,j+1

)

∣

∣

∣

≤ Ch

[

1+ sup
xi∈(0,1)

exp (−p∗(1− xi)/cε)

c3ε

]

.

�

�

�
(1+�tθLh,�t)

�

Uj+1(xi)−Ui,j+1

�

�

�

�

= �tθ









cε

�

d2

dx2
Uj+1(xi)−

D+
x D

−
x h

2

γ 2
i

Uj+1(xi)

�

+ pi

�

d

dx
Uj+1(xi)− D−

x Uj+1(xi)

�







≤ Ccε

�

�

�

�

d2

dx2
Uj+1(xi)− D+

x D
−
x Uj+1(xi)

�

�

�

�

+ Ccε

�

�

�

�

�

�

h2

γ 2
i

− 1

�

D+
x D

−
x Uj+1(xi)

�

�

�

�

�

+ Ch

�

�

�

�

d2

dx2
Uj+1(xi)

�

�

�

�

≤ Ccεh
2

�

�

�

�

d4

dx4
Uj+1(xi)

�

�

�

�

+ Ch

�

�

�

�

d2

dx2
Uj+1(xi)

�

�

�

�

.
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Lemma 3.4  For a fixed mesh N, and for cε → 0, we 
obtain

Using Lemma 3.4 into Theorem  3.1 gives 
∣

∣(1+�tθLh,�t)
(

Uj+1(xi)−Ui,j+1

)
∣

∣ ≤ Ch . Applying the 
discrete maximum principle in Lemma 3.2, we obtain 
the error bound as 

∣

∣Uj+1(xi)−Ui,j+1

∣

∣ ≤ Ch.

Theorem 3.2  Solution of the scheme in (14) satisfies the 
uniform error bound

Proof  The uniform error bound of the scheme follows 
from the results of Theorem  3.1, Lemma 3.4 and the 
bound from temporal discretization. 

Richardson extrapolation
We apply the Richardson extrapolation technique in 
spatial direction to accelerate the rate of convergence 
of the scheme. Let U2N ,M

i,j+1  denoted for an approxi-
mate solution on 2N and M number of mesh points by 
including the mid points xi+1/2 into the mesh points, 
which gives that Uext

i,j+1 = 2U2N ,M
i,j+1 −Ui,j+1 is an extrapo-

lated solution. The uniform error bound becomes

Numerical results and discussion
We considered two numerical examples of the form in 
(1)–(2) from [6, 18] to illustrate the theoretical findings 
of the proposed scheme.

Example 4.1  a(x) = 2− x2, b(x) = x2 + 1+ cos(πx) 
and f (x) = 10t2 exp(−t)(1− x) for u0(x) = 0, 0 ≤ x ≤ 1 
and φ(x, t) = 0, x ∈ [−δ, 0], ψ(1, t) = 0 for final time 
T = 1.

�

�

�
(1+�tθLh,�t)

�

Uj+1(xi)−Ui,j+1

�

�

�

�

≤ Ch



1+ sup
xi∈(0,1)

exp

�

−p∗(1−xi)
cε

�

c3ε



.

(17)

lim
cε→0

max
1≤i≤N−1

exp
(

−p∗(1−xi)
cε

)

cmε

= 0,

i = 1, 2, . . . ,N − 1, m = 1, 2, 3, . . .

(18)

sup
0<cε≤1

∥

∥u(xi, tj+1)−Ui,j+1

∥

∥ ≤

{

C(N−1 + (�t)), 1
2 < θ ≤ 1,

C(N−1 + (�t)2), θ = 1
2 ,

�

(19)

sup
0<cε≪1

∥

∥

∥
u(xi , tj+1)− Uext

i,j+1

∥

∥

∥
≤

{

C(N−2 + (�t)), 1
2
< θ ≤ 1,

C(N−2 + (�t)2), θ = 1
2
,

Example 4.2  a(x) = 2− x2, b(x) = 3− x and 
f (x) = exp(t) sin(πx(1− x)) for u0(x) = 0, 0 ≤ x ≤ 1 
and φ(x, t) = 0, x ∈ [−δ, 0], ψ(1, t) = 0 for final time 
T = 1.

The exact solution of the examples are not known. We 
use the double mesh procedure to calculate maximum 
absolute error as EN ,M

ε,δ = maxi,j |U
N ,M
i,j − U2N ,2M

i,j |. The 
uniform error estimate is calculated using 

Table 1  Maximum absolute error of Example 4.1 for δ = 0.9ε , 
θ =

1

2

ε ↓ N = M → 2
4

2
5

2
6 2

7

Before extrapolation

10
−4 1.4608e−02 8.1605e−03 4.3079e−03 2.2125e−03

10
−6 1.4608e−02 8.1600e−03 4.3077e−03 2.2124e−03

10
−8 1.4608e−02 8.1600e−03 4.3077e−03 2.2124e−03

10
−10 1.4608e−02 8.1600e−03 4.3077e−03 2.2124e−03

E
N,M 1.4608e−02 8.1600e−03 4.3077e−03 2.2124e−03

r
N,M 0.8401 0.9217 0.9613 -

After extrapolation

10
−4 8.1605e−03 2.2125e−03 5.6425e−04 1.4182e−04

10
−6 8.1600e−03 2.2124e−03 5.6422e−04 1.4181e−04

10
−8 8.1600e−03 2.2124e−03 5.6422e−04 1.4181e−04

10
−10 8.1600e−03 2.2124e−03 5.6422e−04 1.4181e−04

E
N,M 8.1605e−03 2.2125e−03 5.6425e−04 1.4182e−04

r
N,M 1.8830 1.9713 1.9923 –

Table 2  Maximum absolute error of Example 4.2 for δ = 0.9ε , 
θ =

1

2

ε ↓ N = M → 2
4

2
5

2
6 2

7

Before extrapolation

10
−4 9.2814e−03 6.5095e−03 3.8026e−03 2.0167e−03

10
−6 9.2806e−03 6.5094e−03 3.8028e−03 2.0170e−03

10
−8 9.2806e−03 6.5094e−03 3.8028e−03 2.0170e−03

10
−10 9.2806e−03 6.5094e−03 3.8028e−03 2.0170e−03

E
N,M 9.2814e−03 6.5095e−03 3.8028e−03 2.0170e−03

r
N,M 0.5118 0.7755 0.9149 –

After extrapolation

10
−4 6.5095e−03 2.0167e−03 5.1663e−04 1.2977e−04

10
−6 6.5094e−03 2.0170e−03 5.1667e−04 1.2978e−04

10
−8 6.5094e−03 2.0170e−03 5.1667e−04 1.2978e−04

10
−10 6.5094e−03 2.0170e−03 5.1667e−04 1.2978e−04

E
N,M 7.0289e−03 2.0310e−03 5.1667e−04 1.2978e−04

r
N,M 1.7911 1.9749 1.9932 –
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EN ,M = maxε,δ

∣

∣

∣
EN ,M
ε,δ

∣

∣

∣
 . The uniform rate of convergence 

is calculated using rN ,M = log2
(

EN ,M/E2N ,2M
)

.

Solution of Examples 4.1 and 4.2 exhibits a right bound-
ary layer. As one observes in Fig.  1, as the perturbation 
parameter, ε goes small; the boundary layer formation 
becomes more visible. In Tables  1 and 2, the maximum 
absolute error, the uniform error and the uniform rate of 
convergence of the scheme before and after Richardson 
extrapolation is given for different values of ε and mesh 
numbers. As one observes the results in the tables, the 
maximum absolute error before Richardson extrapola-
tion are independent of ε as, the parameter ε goes small. 
The scheme before Richardson extrapolation have linear 

order of convergence and the scheme after Richardson 
extrapolation have second order of convergence. 

Conclusion
In this paper, second order uniformly convergent numerical 
scheme is developed for solving singularly perturbed para-
bolic delay differential equation. The developed scheme 
is based on non standard FDM. Stability of the scheme is 
investigated using construction of barrier function for 
the solution bound. Uniform convergence of the scheme 
is proved. Applicability of the scheme is investigated by 
considering two test examples. Effects of the perturbation 
parameter on the solution is shown using figures and tables. 
The scheme is accurate, stable and uniformly convergent.

00.20.40.60.81

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

xt (a)

00.20.40.60.81

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

0.3

xt (b)

00.20.40.60.81

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

0.3

xt (c)

00.20.40.60.81

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

0.3

xt (d)
Fig. 1  Boundary layer formation in 3D view of Example 4.2 on a ε = 10

−1 , b ε = 10
−2 , c ε = 10

−3 and d ε = 10
−4
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Limitations

•	 The proposed scheme is not layer resolving method 
(i.e. there is no sufficient number of mesh points in 
the boundary layer region).
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