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Abstract 

Objective:  The objective of this study was to employ ensemble clustering and tree-based risk model approaches to 
identify interactions between clinicogenomic features for colorectal cancer using the 100,000 Genomes Project.

Results:  Among the 2211 patients with colorectal cancer (mean age of diagnosis: 67.7; 59.7% male), 16.3%, 36.3%, 
39.0% and 8.4% had stage 1, 2, 3 and 4 cancers, respectively. Almost every patient had surgery (99.7%), 47.4% had 
chemotherapy, 7.6% had radiotherapy and 1.4% had immunotherapy. On average, tumour mutational burden (TMB) 
was 18 mutations/Mb and 34.4%, 31.3% and 25.7% of patients had structural or copy number mutations in KRAS, 
BRAF and NRAS, respectively. In the fully adjusted Cox model, patients with advanced cancer [stage 3 hazard ratio (HR)  
=  3.2; p  <  0.001; stage 4 HR  =  10.2; p  <  0.001] and those who had immunotherapy (HR  =  1.8; p  <  0.04) or radio-
therapy (HR  =  1.5; p  <  0.02) treatment had a higher risk of dying. The ensemble clustering approach generated four 
distinct clusters where patients in cluster 2 had the best survival outcomes (1-year: 98.7%; 2-year: 96.7%; 3-year: 93.0%) 
while patients in cluster 3 (1-year: 87.9; 2-year: 70.0%; 3-year: 53.1%) had the worst outcomes. Kaplan–Meier analysis 
and log rank test revealed that the clusters were separated into distinct prognostic groups (p  <  0.0001). Survival tree 
or recursive partitioning analyses were performed to further explore risk groups within each cluster. Among patients 
in cluster 2, for example, interactions between cancer stage, grade, radiotherapy, TMB, BRAF mutation status were 
identified. Patients with stage 4 cancer and TMB  ≥  1.6 mutations/Mb had 4 times higher risk of dying relative to the 
baseline hazard in that cluster.
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Introduction
An evaluation of cancer drug approvals by the Euro-
pean Medicines Agency (EMA) found that 57% of drugs 
entered the market with limited evidence of survival ben-
efits where at 3 years after market entry, survival gains in 

patients receiving 33 of the 39 cancer drugs were mar-
ginal [1]. Long-term follow-up analyses of data from tri-
als in the post-market entry period are rare. Moreover, 
only 26% of randomised controlled trials (RCTs) investi-
gated extension of life as the primary outcome [1] despite 
the EMA’s recommendation that overall survival is the 
most crucial outcome for investigating efficacy and safety 
of oncology drugs [2].
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In light of these issues, population-based health records 
may help advance the long-term post-market evalua-
tion of cancer drugs and support the identification and 
approval of new indications. Since the inception of the 
21st Century Cures Act that aims to accelerate the devel-
opment and innovation of medicines, the Food and Drug 
Administration created a framework for evaluating the 
use of real-world data (RWD) to support drug trials [3]. 
Overall survival in patients with cancer is well studied, 
particularly in the context of how genetic and transcrip-
tomic alterations in tumours affect patient outcomes. 
Harnessing data from the International Cancer Genome 
Consortium and The Cancer Genome Atlas, there have 
been concerted efforts by the cancer community to 
develop genetic signatures that are predictive of overall 
survival rates [4–10]. Linking genetic data with electronic 
health records (EHRs) may allow further exploration of 
associations between clinical characteristics and tumour 
genetic profiles.

We seek to evaluate whether a clinicogenomic dataset 
from Genomics England could be useful for predicting 
survival outcomes based on clinical and genetic fea-
tures in patients with colorectal cancer. We employed an 
ensemble clustering approach and survival tree analysis 
to identify clinicogenomic features that are indicative of 
prognosis.

Main text
Materials and methods
Dataset
Clinical and genome sequence data from 2211 patients 
with colorectal cancer was used.

Clinical data  Clinical data consisted of data from sec-
ondary care, the National Cancer Registration and Analy-
sis Service and the Office for National Statistics (ONS). 
We obtained patient demographic details, age at cancer 
diagnosis, sex, tumour grade, tumour, nodes metastasis 
(TNM) stage and information on cancer therapy. Cancer 
type was defined based on site and morphology of cancer 
coded in ICD-O2 and ICD-10. Tumour grade was defined 
as G1 (well differentiated), G2 (moderately differentiated) 
and G3 (poorly differentiated). Cancer treatment was 
categorised as surgery, chemotherapy, radiotherapy and 
immunotherapy. Mortality data were obtained from the 
ONS registry.

Genetic data  Tumour mutational burden (TMB) was 
computed as the number of somatic non-synonymous 
small variants per megabase (Mb) of coding sequence. 
Only variants meeting the quality threshold criteria 
were included in TMB ascertainment (detailed calcula-
tions of variant quality metrics have been described pre-

viously) [11]. Somatic structural variants (SVs) and copy 
number variants (CNVs) for BRAF, KRAS and NRAS 
were obtained using the R package ‘getSVCNVperGene’. 
SVs and long indel (>  50  bp) calling were performed 
using the Manta Structural Variant Caller [12]. CNVs 
were called using the Canvas algorithm that identified 
genomic regions that had been lost or gained and inves-
tigated minor allele frequencies and coverage to deter-
mine copy number [13].

Ensemble clustering and validation
To perform clustering on mixed data types (i.e., numeri-
cal and categorical data), we first analysed dissimilar-
ity between observations using the Gower distance. We 
employed four clustering algorithms: partitioning around 
medoids (PAM), hierarchical clustering (i.e., divisive 
analysis or DIANA), Fuzzy C-means (FCM) and k-means. 
We employed ensemble clustering (consensus clustering) 
[14] to merge results from multiple clustering algorithms 
above using the diceR package. The ‘dice’ function was 
used to perform consensus clustering across subsamples 
and algorithms for a different number of clusters (k). The 
number of subsamples was specified as five and the con-
sensus function to use was specified as the cluster-based 
similarity partitioning algorithm. Internal cluster valida-
tion indices were used to assess the performance by con-
sidering the separability and compactness of the clusters. 
We selected the C-index, silhouette coefficient, compact-
ness and connectivity indices for validation. The relative 
ranks of each algorithm across the internal indices were 
considered and their sum was computed. Algorithms 
below 75% for the sum rank were trimmed. Post trim-
ming, algorithms were reweighted based on their internal 
index magnitudes and fed into the consensus function.

Survival analyses
Prior to clustering, we applied the Cox proportional haz-
ards regression analysis to estimate overall survival out-
comes for each clinicogenomic feature. All hazard ratios 
were fully adjusted for all other features investigated. To 
examine potential interactions between clinicogenomic 
predictors, we performed survival tree (recursive par-
titioning) analyses [15] for each cluster using the rpart 
package. Tree-based models allowed the visualisation 
of decision rules for predicting an outcome for different 
patient groups within each cluster. Survival data were 
pre-scaled to fit an exponential model in that the pre-
dicted risk in the root node is fixed to 1.0. Relative risk 
estimates in other nodes were reported as relative to the 
survival in the root node (i.e., relative to the baseline 
hazard). Mean deviance was ascertained to measure the 
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variability among all observations that reached a speci-
fied node.

Results
Clinicogenomic features of the colorectal cancer cohort
The Genomics England cohort consisted of 2211 patients 
diagnosed with colorectal cancer (see Fig. 1 for the study 
design). Of these patients, 59.7% were men and the mean 
age of diagnosis was 67.7 (Additional file  1). The pro-
portions of patients with colorectal cancer diagnosed 
at different stages were as follow: stage 1 (16.3%), stage 
2 (36.3%), stage 3 (39.0%) and stage 4 (8.4%). Patients 
were also classified according to tumour: grade 1 (3.0%), 
grade 2 (81.9%) and grade 3 (15.1%). Almost all patients 
underwent surgical intervention (99.7%), while 47.4% 
of patients underwent chemotherapy, 7.6% had radio-
therapy and 1.4% had immunotherapy. With regards to 
genetic features, we explored tumour mutational burden 
(TMB) and observed that patients had 18 mutations/Mb 
on average (Additional file  1). We also explored struc-
tural variants and copy number variants and found that 
34.4%, 31.3% and 25.7% of patients had mutations in 
KRAS, BRAF and NRAS respectively (Additional file  1). 
We performed Cox regression analyses where all haz-
ard ratios (HRs) were fully adjusted for all other features 
considered. In the fully adjusted model, when consider-
ing cancer stage (with stage 1 as the reference), patients 
who were at stage 3 (HR  =  3.2; p  <  0.001) and stage 4 
(HR  =  10.2; p  <  0.001) had a significantly higher risk of 

death, while stage 2 patients did not show any increase 
in risk (HR  =  1.3; p  =  0.29). Additionally, immunother-
apy (HR  =  1.8; p  <  0.04) and radiotherapy (HR  =  1.5; p  
<  0.02) were significantly associated with poorer survival 
outcomes (Additional file 2).

Ensemble clustering and validation
Employing resampling of the four clustering algorithms 
(K-means, PAM, DIANA and fuzzy C-means) on five rep-
licates of the dataset, the optimal number of clusters was 
found to be between four and six. Internal cluster validity 
indices (i.e., C-index, silhouette coefficient, compactness 
and connectivity) for cluster validation were assessed to 
compare results from the varying number of clusters (k) 
(Additional file 3). Based on the cluster validity indices, k  
=  4 was found to be optimal based on compactness and 
connectivity (Additional file 4). We employed the ensem-
ble clustering approach to consider the relative ranks of 
each of the four clustering algorithms across all internal 
validity indices to compute the overall rank sum to gener-
ate a final ensemble with the largest silhouette coefficient 
and lowest connectivity (Additional file 4).

Descriptive features of the clusters and overall survival 
outcomes
Descriptive statistics of the clusters were provided in 
Additional file  5. Cluster 1 featured patients with high 
TMB (mean  =  32.3 non-synonymous somatic muta-
tions per Mb). The proportion of patients having stage 

Fig. 1  Schematic diagram depicting the study design
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1 or stage 2 tumours were as follow: cluster 1 (69.2%), 
cluster 2 (32.2%), cluster 3 (8.7%) and cluster 4 (80.9%) 
(Additional file  5). Cluster 2 consisted of the highest 
proportion of patients who had chemotherapy (75.2%) 
while cluster 4 had the least number of patients who 
had chemotherapy (27.7%) (Additional file  5). Cluster 4 
had the highest proportion of patients with mutations in 
KRAS (60.8%), BRAF (55.8%) and NRAS (54.7%). We esti-
mated overall survival rates at 1 year, 2 years and 3 years 
post-diagnosis for each cluster. Patients in cluster 2 had 
the best survival outcomes (1-year: 98.7%; 2-year: 96.7%; 
3-year: 93.0%) while patients in cluster 3 (1-year: 87.9; 
2-year: 70.0%; 3-year: 53.1%) had the worst outcomes 
(Additional file  5). We generated a Kaplan–Meier plot 
and to illustrate the overall survival outcomes stratified 
by the clusters generated from ensemble clustering. Log 
rank test revealed that the clusters were separated into 
distinct prognostic groups (p  <  0.0001) (Fig. 2).

Survival tree analyses within each prognostic cluster 
offered an additional resolution to stratify patients 
into risk group by clinicogenomic features
We performed survival tree (recursive partitioning) 
analyses to garner additional insights into the potential 
interactions between clinicogenomic predictors. Survival 
trees allowed the identification of interactions between 
clinicogenomic predictors by grouping subjects accord-
ing to their survival profiles. Survival trees for each clus-
ter were shown in Fig. 3. For cluster 1, cancer stage was 
found to be a significant predictor of overall survival 
(Fig. 3A). For cluster 2, cancer stage, grade, radiotherapy, 
TMB, BRAF mutation status were important predictors 
(Fig. 3B). Survival tree for cluster 3 featured TMB, BRAF 
and KRAS mutation status and cancer stage as predic-
tors (Fig. 3C). For cluster 4, stage, radiotherapy and TMB 
were found to be important (Fig. 3D).

Relative risk estimates were shown in the survival 
trees for each node as relative to the survival in the root 
node. In the survival tree for cluster 2, the rightmost 
terminal node had a relative death rate of 4 times the 
overall rate and was defined by stage 4 and TMB  ≥  1.6 
(Fig. 3B). For cluster 3, TMB was found to be the most 
important predictor of overall survival with a cut-off 
value of 3.9 mutations/Mb. Patients with TMB  <  3.9 
mutations/Mb were further split by TMB and BRAF 
mutation status, in which the group with TMB  <  3.6 
mutations/Mb, no BRAF mutation and TMB  ≥  3.3 
mutations/Mb had a relative death rate of 2.5 times 
the overall rate (Fig.  3C). In contrast, we observed a 
low relative risk for death of 0.13 in patients with TMB  
<  3.9 but TMB  ≥  3.6 mutations/Mb (Fig.  3C). Simi-
larly, a relative risk of 0.13 is also observed in another 
group of patients having TMB  <  3.9 and also TMB  <  
3.6 mutations/Mb, followed by having BRAF muta-
tion and no KRAS mutation (Fig. 3C). Survival tree for 
cluster 4 revealed that patients were initially split by 
cancer stage, where the left side of the tree consisted 
of patients at stage 1 or 2, while the right side was for 
patients at stage 3 or 4 (Fig. 3D). Then, patients at stage 
3 or 4 were split by TMB with a cut-off value of 3.8 
mutations/Mb. Patients with TMB  ≥  3.8 had a relative 
death rate of 1.9 times. Patients with TMB  <  3.8 were 
further split by TMB with a cut-off of 3.0, and patients 
with TMB  ≥  3.0 but  <  3.8 had a relative death rate of 
6.4 times the overall rate (Fig. 3D).

Discussion
We demonstrated the feasibility of predicting overall 
survival outcomes in patients with colorectal cancer 
using ensemble clustering and survival tree analyses 
on a clinicogenomic dataset. Large-scale national esti-
mates of colorectal cancer survival rates have mostly 
focused on cancer survival by stage using staging 
information collected from population-based can-
cer registries [16]. Independently, other studies have 
investigated the role of genomic biomarkers on cancer 
survival outcomes [17–23]. Our study demonstrated 
that clinicogenomic features can be employed to pro-
vide additional resolution for stratifying patients into 
risk groups not currently afforded by staging informa-
tion alone. We have identified four prognostic clusters 
using ensemble clustering. As each cluster consists of 
a heterogeneous group of patients, subsequent survival 
tree analyses within the clusters revealed the different 
contributions of cancer stage/grade, radiotherapy treat-
ment, TMB, BRAF or KRAS mutation status in predict-
ing the relative risk of death in patients with colorectal 
cancer.

Fig. 2  Overall survival outcomes in patients with colorectal cancer 
stratified using the ensemble clustering approach
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Fig. 3  Survival tree analyses for each of the four prognostic clusters. A Cluster 1, B cluster 2, C cluster 3 and D cluster 4. Proportion of patients 
within each node are indicated as a percentage. Relative risk (RR) for each node is indicated, along with the mean deviance (md) value. Nodes 
described in the results section are highlighted in blue boxes
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Limitations
First, the study is underpowered to investigate prog-
nosis in relation to specific cancer therapy. Second, we 
have only investigated mutation profiles of KRAS, BRAF 
and NRAS as an initial proof of concept. Third, analyses 
were performed only in patients with complete stag-
ing information. Future work may explore imputation 
methods to address missing data. Fourth, the selection 
of patients for recruitment into the 100,000 Genomes 
Project may introduce a selection bias for individuals 
with access to specific healthcare services.
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